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The Fast Fourier
Transform

... Its discrete version is computed by the Fast
Fourier Transform, which is the most important
algorithm of the last century.

Gilbert Strang, MIT

http://www.icase.edu/collog-v3/data/colloq.Strang.G ilbert.2000.12.15.htm|
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Multiplication

How should we multiply large integers x and y?

http://en.wikipedia.org/wiki/Multiplication_algorit hm
Karatsuba (1962): Divide and conquer! i.e. write
X = XYW+ X%
y = yiW"+y,

And the product becomes
XY = X1Y1W2™ + (X1Yo + Xoy1 )W™ + X0V

For example 1011x 205with W =10and m=2

1011 = 10x10°+11

= XxY=20x 10"+ (504+-22)10°+55
205 — 2x 1P 45 } Xy =20x10"+(50+22)10°+

The trick can be used recursively (e.g. for x; xy;)
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Fast Fourier Transform

m DFT, as presented so far takes a matrix
multiplication

m N? complex multiplies

m FFT is based on divide and conquer
m much faster O(NlogN)

m Not quite as simple as Karatsuba
m use symmetries of the transform
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The Fast Fourier Transform

Could do the DFT by the matrix multiplication X = Ax.
This takes O(N?) operations, which could get quite large.
Cooley-Tukey (radix-2) algorithm is O(Nlog,N) for data
of length 2¢ later.

m FFT first use by Gauss

m being used in by physicists in X-ray scattering in
1940

m various other users in proprietary settings
m Cooley-Tookey, 1965

m versions hot dependent on data length 2%,
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Fast Fourier Transform

FFT has many version, but here we do radix-2
Take advantage of symmetry properties in the data
Write the DFT and IDFT

X (k) = NZ:X(n)W,{}k and x(n) = %NZ:X(k)WN”k

0< k< N and Wy = e 2N,

Symmeftries

Transform Methods & Signal Processing (APP MTH 4043): lexfi/ — p.6/77



Radix-2

For k< N/2
N—-1 y
X(k) = X(n) WY
2,
N/2—1 N/2—1

= Z> X(2n) W2k 4 Z) x(2n+ 1) W2 K
n= N=

N/2-1 N/2—1

= Z> X(2n) WK, + WA, Z) X(2n+ 1) W5,
nN= N=

= F(K) +WSG(K)

Where F (k) is the DFT of the sequence
{x(0),x(2),...,x(2N —2)}, and G(k) is the DFT of the
sequence {X(1),x(3),...,X(2N—1)}.
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Radix-2

For k>=N/2, exploit the periodicity of the DFT, i.e. we
know that F(k+N/2) = F(k) and G(k+ N/2) = G(k), and

W2 = Wik s0 that X(k+N/2) = F (k) —WKG(K), and
The DFT can be computed by

X(k) = F(K)+WSG(k), k=0,1,...,N/2—1
X(k+N/2) = F(k)—WEG(K), k=0,1,...,N/2—1

where F (k) and G(k) are the DFTs given by

N/2—1
F(k) = ; X(2n) W,
N/2-1
Gk) = % x(2n+1)W N2
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Radix-2

Procedure: split the data in two (odd terms and even
terms) and FFT the two sequences, then add (with an
additional factor for odd terms).

x(0) —| |ength 4 FO p-| length 2 > X(0)
x(4) —» F(2) X(2)
x(6) —> F(3) length 2 X(3)
DFT
0 length 2
x(1) —>» length 4 G(0) xly DET - X(4)
x(5) —» e length 2 X(6)
x(7) —>» G(3)X | DFT > X(7)

Can repeat recursively
Depends on the length of the series being even.
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Radix-2 as factorization

Can view the DFT as a matrix transform X = Ax, where
(for a length 8 sequence)

[ 1

e e

1 1 1 1 1 1 1)
W W2 We w4 ws owe w7
W2 W4 W6 W8 WlO W12 W14
W3 W6 W9 WlZ W15 W18 W21
W4 W8 W12 W16 WZO W24 W28
W5 WlO W15 W20 W25 WSO W35
W6 W12 W18 W24 WSO W36 W42
W7 W14 W21 W28 W35 W42 W49 )
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Radix-2 as factorization

We can factorize A
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Picture of factorization
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Radix-2 bit reversal

Note the funny ordering of the inputs. Need to
efficiently order the inputs. The procedure used for
radix-2 is called bit reversal.

Normal order | binary bits | bits reversed | new order
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Transform Methods & Signal Processing (APP MTH 4043): lex@i7 — p.13/77



Other algorithms

Radix-2 takes O(Nlog,N) calculations, if the data length
is a power of two.

m use recursive decimation by factors of two

m if the data isn't a power of two, we could pad with
zeros, but this is adding unwanted calculations.

m better alternatives exist

m radix-N, or some alternative (e.g. see "Transforms
and Fast Algorithms for Signal Analysis and
Representations”, Bi and Zeng, Birkhauser, 2004)
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Matlab commands for FFT

Note, indexes in Matlab run from 1 o N (not 0 to N—1).

fft (x(n)) = X(k) = Y x(n)e ZHHDN k=1 N.

N .
ifft (X(K)) = x(n) = % Y XKD n=1_N.
k=1

X(1) is the DC term, X(n) is the fs term. To plot

symmeftric power spectrum use, e.qg.

f s = 1000;

f 0 = 100;

x = 1:1/f s:10;

y = sin(2 *pi *f 0 *Xx);

semilogy(-f_s/2+f s/N:f s/N:f s/2, abs( fitshift (fft(y))).”2);
set(gca, 'ylim’, 10.”[-2 9]);

xlabel('frequency (Hz));
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Matlab example

matlab ex 1.m

_2 - - - -
10 i i i i
-500 -300 -100 100 300 500
frequency (Hz)
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Symmetry

Discrete power spectrum is even and periodic so we can
display in a number of ways.

power spectrum

&&@%M

Frequency (0

A/k \A

M
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Matlab example 2

matlab _ex 2.m

.............................................................

200 400 600 800 1000
frequency (Hz)
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Random Processes

We've mentioned "noise” before, but in a fairly crude
sense. No consideration of noise can really be done
carefully without some understanding of random
processes, and how Fourier analysis works on random
signals, in particular we will define the spectral density
of a signal.
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Random processes

A discrete time random process is just a random vector
X = (X, X2,...,Xn).

m in general, the x; may have dependencies, so we need
to describe the random sequence, we specify the
N-th order distribution functions, for all N > 1

Fx (X, Xneds - -« s Xnen—1) = P{Xn <Xny X1 <Xnits e o Xnane1 < Xnan_1}

m typically, we don't need to know all of this, e.g. for

White noise, the values at each time interval are
independent, so we only need to know the first

order distribution functions F(x,).
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Densities and distributions

Where the distribution function is continuous (e.g. for
well-behaved continuous random variables), we can
define a density function, e.qg.

_ d&

fx (X) = W

with the meaning that
fx (X)dx=P{X € [x,x+dx) }

We can define fy(x)dx= dFx(x), where the latter term is
more general (applying to badly behaved random
variables too). Integrals defined WRT to d~(X) are
Lebesgue-Stieltjes integrals rather than just Lebesgue
integrals.
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Moments of the process

Sometimes it is enough to specify the moments of the
process, e.g. the mean px(n) and variance o%(n) at time n.

ux(n) = E[X(n)]
— /_xde(xn)
— /oo Xfx(Xn)dx, where this is defined

o%(n) = Var[X(n)
E [(X(n) — px (n))?

[ =) )

Can extend definition to the n-th central moment.
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Covariance

The covariance of two random variables X and Y if
defined by

CoviX,Y} =E[(X-E[X])(Y -E[Y])

It tells us about second-order correlations between X
and Y.

The auto-covariance of a process is
Rxx(n; k) = CowW{X(n),X(n+k)}

and this tells us about correlations between the process
at different times n, and different lags k.
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Stationarity

m A process is strictly stationary if all of its

distribution functions are invariant under time
shifts, e.g.

FX(Xm Xn+1y--- 7Xn—|—N—1) — |:X (Xn+k7 Xn+k+1s--- 7Xn—|—k—|—N—1)

m a process is called wide-sense, or weakly, or
second-order stationary if its mean, variance and
auto-covariance are time-shift invariant, e.qg.

ix(N) = Hx
ox(n) = ox
Rxx(n;k) — Rxx(k)

for all n
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Marginal distribution

The marginal distribution of a stationary process is
defined by the distribution of X,, e.g.

F(Xn)

which will be identical for all values of n for a stationary
process.

Examples:
m Bernoulli process: the marginal distribution takes
values 0 or 1 with probabilities pand 1— p,
respectively.

m random dice rolls: the marginal distribution is
uniform on {1,2,3,4,5,6}.
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Gaussian processes

m are processes with a Gaussian marginal distribution

1 1/X— le>2
f (X)) = exp| —=

m completely characterized by mean, variance and
auto-covariance

m hence the value of second-order stationarity!
m Gaussian processes are the “linear-time invariant”
processes of the noise world
m simple, fractable, sometimes reasonable

m Central Limit Theorem: sums of well behaved
random variables tend towards Gaussian
distributions
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Useful fact

If X and Y are independent Gaussian random variables,

then their sum X +Y (and difference X —Y) will also be
Gaussian, with mean and variances

Mx +v
Mx—y =

2
Oxiy =
2 _
Ox_vy =

x + Hy
Mx — My
0% + 0%

0% +0%

We could easily generalize this to include correlations,
with the only effect being a modification to 0%, and

2
0%_v.

Also note that tox = apx, and 03y = a%0%.

Transform Methods & Signal Processing (APP MTH 4043): lex@Qi7 — p.27/77



Spectral density

There is a direct relationship between the power
spectrum of stochastic processes, and its
autocovariance function. Note, the power spectrum of a
single random process is also a collection of random
variables, so we talk about the mean values of the power
spectrum, or rather, its spectral density.

(00}

—I2T[h)\R
h_z—oo

Note then
1
Rxx(k):/_le'sz()\)d)\
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Spectral density properties

The spectral density has the properties
m f(A) is non-negative
mf(A)is even
m f(A) is the Fourier transform of the autocovariance.
m the autocovariance is the inverse FT of f(A)
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Why the relationship?

In real-life, only we usually only get one realization of a
process, so we can't measure directly the ensemble
behavior, e.g. we can't directly measure Rxx (k).

For stationary (ergodic) processes we use the fact that

a time average converges to a ensemble average, for
Instance

1N—k—1 e
N 2 DXk~ ST R
1 1
time average ensemble average
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Wiener-Kintchine theorem

For simplicity, consider the mean zero case, e.g. px =0

1N k—1
Rxx(k) = I\IIILnooN % n+k
1N 1

2

Nzknk

~ Nx(n) *X(—n)

Take the FT, and we get

FIRx(} = XX (K)

1
= XK
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White noise

Typically, everyone assumes noise is "white", or
“uncolored”.
m Gaussian (typically implied, though not necessary)

m its spectral density is flat
i.e., the noise includes all frequencies (up to f)

f(A) =0°

m Uncorrelated (same as independent for Gaussian)

= follows from duality of the spectrum and
auto-covariance, i.e. flat spectrum implies delta

function (at zero) for auto-covariance, and so
the autocovariance is zero at non-zero lags.
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Example: white noise

White Gaussian noise 4

10

_3 3
_4 A A M 2
0 0.002 0.004 0.006 0.008 0.01 a a . .
time (seconds) 0 5 10 15 20
frequency (kHz)
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Spectral density

The spectral density acts like the power spectrum, and
so allows us to work out (statistically) what the output
of noise passed through a linear time-invariant filter (or

system) will look like.

m we can compute the mean of the output from
stationary solution to the recurrence relation

described by the filter

m we can compute the auto-covariance from the
Wiener-Khintchine theorem

m if the input is Gaussian, then the output is also
Gaussian

m hence it is completely characterized by its mean,
variance, and auto-covariance.
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Filtered noise

Write the filter in ferms of its impulse response, e.g.

yn) = 3 wi)x(n—i)

i=—o00

Expectation is linear operator so for a stationary
process x(n)

Ely(n)] = E| Y wiix(n—i)

= e Y W)

| =—00

Transform Methods & Signal Processing (APP MTH 4043): lexti/ — p.35/77



Filtered noise

Then note that if x(n) is white Gaussian noise, the RHS
above is the sum of indep. Gaussian random variables, so
its variance will add

Varly(n)] = Var Z w(i)x(n—i)

|
=
—~
N
N
<
o
-3
'
—~
>
|

||
<
M
s
e
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Examples

Input process x(n), with mean | and variance o°

m MA filter: y(n) = & S¥'x(n—1i), the output will have
mean Y, and variance <.
As we expect, the MA is an unbiased estimator of

the mean px, and the variance is reduce by a factor
of N for a filter of length N.

m Difference: y(n) = x(n) —x(n— 1), the output will
have mean O, and variance 202,

As we expect, the diff has mean zero, but larger
variance (it emphasizes changes)
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Example 1: filtered white noise

White noise, filtered with rectangular MA, length 11 <)

10

10

0.002 0.004 0.006 0.008 0.01 10

time (seconds) 0 5 10 15 20

frequency (kHz)
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Example 2: filtered white noise

White noise, filtered with rectangular MA, length 111 <

1.5 r r r r 1010

O 0.602 0.0.04 0.0.06 0.0.08 O..Ol 10 h"“"“hlh““ “J\““ “I ““\H “ l “l

time (seconds) 0 5 10 20
frequency (kHz)

Transform Methods & Signal Processing (APP MTH 4043): lexti/ — p.39/77



Example 3: filtered white noise

White noise, filtered with a difference <t

10

5 T ' ' ' 10

10 f

0 0.002 0.004 0.006 0.008 0.01 10~

: 0 5 10 15 20
time (seconds) frequency (kHz)
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Color of noise

m white: flat spectral density see above.

m brown: spectral density proportional to 1/f2
(decrease by 6dB per octave). Named after
Brownian motion to which it is related.

m pink: spectral density proportional to 1/f
(decreases by 3dB per octave). This is non-trivial,
but we will see more later.

m blue: spectral density proportional to f (increases
by 3dB per octave). This is meant to be good for
some types of dithering.

m plus some more...
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Parseval, Rayleigh and
Plancheral

There are a key set of theorems in transform theory
named after various important figures in this area
(Parseval, Rayleigh and Plancheral) and we would be
remiss if we did not consider these along with a
generalization of the Fourier transform.
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Parseval's theorem

m p(x) is a real periodic function with period T.

m Fourier series a;, and b; (see Lecture 2)

Parseval:

1 rT/2 2 00 2
T/ p(x)?dx = a5+ Zaner

T2
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Rayleigh's theorem

m continuous function f(x) with
m Fourier transform F(s)

Rayleigh:
| 110fax= | |F(9)as

—00

Power is conserved by the transform!
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Rayleigh's theorem proof

/_oo]f(x)\zdx — / f(x) f*(x) dx

— / f(x)f*(x)e'?™dx for s =0

— fg{f X)f*(x)} fors =0
= F(s)*F*(-s) fors =0

_ / F(SF*(s—g)ds fors =0

= / F(s)F*(s)ds
| IF(s)as
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Parseval-Rayleigh theorem

m discrete time function x(n) with
m Discrete Fourier transform X (k)

NZ) () = z;:rxooiz
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Parseval-Rayleigh theorem proof

N—-1

;x(n)x*(n)

N—1 |
- ZOx(n)x*(n)e"Z"”W'\I for k' =0
£

g) (0

— f_k,{x(n)x*(n)} for k=0
— (k’)*X ( k') /N fork =0

= (1/N) ZX “(k=kK) fork'=0
- <1/N>kzox<k> — (1/N) Z!X
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Plancherel

m continuous functions f(x) and h( ) with
m Fourier transforms F(s) and H(s

/fh*dx/FH*

m real valued f(x) and h(x) then

/ f(x )dx:/_o:oF(s)H(s)ds

m similar results for discrete time

N3 Xy ()= Y XY (K
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Parseval-Rayleigh-Plancherel

m terminology interchanged in different literature
m e.g. Parseval sometimes used for all three versions
m we are following Bracewell's nomenclature

m important deftail:
power is conserved by the transforms

m extends to 2D

// f(X,y)|*dx dy= // F (u,v)|?dudv

m this is a common feature of many transforms
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Generalized Fourier
Transforms

In this section we consider a more general approach to
the notion of an integral fransform developed from the
basics of linear algebra (which we will start by
reviewing). The approach allows us to define transforms
in terms of a change of basis for representing our signal,
and in doing this we can see that there are actually many
Fourier-like transforms that we could use, depending on
what we wish to accomplish.
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Linear filter characterization

The FT transforms naturally between two views of a
filter

m in fime domain by impulse response

m in freq. domain via transfer function
e.g. ARMA filter characterization

m ARMA coefficients
m poles and zeros in the complex plane

The FT (and z-transform) transforms naturally between
these two views.
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Revue of linear algebra

m vector space

m norms and distances
m inner products

m basis
m eigenvalues, and eigenvectors

m diagonalization
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Vector spaces and function spaces

A Vector Space Sis a non-empty collection of objects
(vectors) X,Y,..., along with two operators (addition, and
scalar multiplication) that is

m closed under addition, e.g.

For all X,Y € Swe have X+Y €S

m closed under scalar multiplication, e.g.

Forall XS and ke R we have kX ¢ S
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Vector spaces and function spaces

The operators have to satisfy various properties

commutivity of addition X+Y=Y+X
associativity of addition X-+(Y+Z)=(Y+X)+Z
additive identity 30 such that X+ 0= X
additive inverse  VX,3— X such that X+ (—X) =0
distributivity  a(X+Y)=aX+aY
distributivity  (a+p)X =aX+pX
associativity of scalar mult.  (af)X = a(BX)
multiplicative identity 31 such that 1.X =X
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Examples

m example 1: the set of vectors x € R", with the
standard vector addition and scalar multiplication.

m example 2: the set of all continuous functions on

the interval [xg,X;], denoted
Clxo,X1] = {f : [X0,X1] — R | f is continuous,
with addition and scalar multiplication defined by

(F+9)(¥) =T(x)+9(x), (af)(x)=af(x)
for any a € R, and f,g € Cxg, xq].

m example 3: The set of square integrable functions
L is the set of functions f : R — R for which
[®, f(x)?dx exists and is finite, with the same
definition of sum and scalar product as for C.
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Normed spaces

More structure is needed, in particular a way of
measuring distances. A norm on a vector space Sis a
real-valued function(al) whose value at x € Sis denoted

|IX||, and has the properties
x| >0 (1)
X|=0iff x=0 (2)
ax|| = |a]||x| (3)
X+VY| <|x|+ |yl (the triangle inequality) (4)

A vector space equipped with a horm is called a
normed vector space.
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Examples

m example 1: the vector space R" can be equipped
with the Euclidean norm defined by ||| = /S, X2.
Alternatively we could use the norm defined by
IXlls = 3ita X

m example 2: the vector space C[xg,x1] can be
equipped with norms

f
f

f

w0 = SURexo ) | T (X))
1—f | f(X)|dX

2:\/fXOf()2dx

= example 3: L2 can be equipped with norm

[fll2= /)= F(X)2dX
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Examples (cont.)

m example 4: Define C"[xg,x] to be the set of

functions that have at least n continuous derivatives
on [Xo,X1]. Note

C"[Xg,X1] C C" Hxg,X1] C --- C CH[Xo,%1] C C[Xo, X4]

C"[xo,X1] is a vector space, and || f |, | |1, and | f||2
are all possible norms on this space. Other norms

J
[flloj="> sup (%]
K—0 XE [X0,X1]

for j < non C"[xg,X4].
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Norms

m denote a hormed vector space (S| -|)).

m Two norms ||-|a and |- || are said to be equivalent if
there exists positive numbers o and 3 such that for

all xe S
a||X[la < [IX[lo < B|[X]|a

m In finite dimensional spaces all norms are equivalent,
but not in infinite dimensional spaces.

m Norms define distances between elements of space
d(f,g)=[f—d
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Inner products

An inner product is a function (-,-) : SxS— R, i.e. it
maps two elements from a vector space S+to a real
number, such that for any f,g,hc Sand a € R.

(f,f)>0 (5)
(f,f)=0iff f=0 (6)
(f,h+g) = (f,h)+(f,0) (7)
(f.9) =g, f) (8)
(af,g)=a(f,g) (9)

A vector space with an inner product is called an inner
product space.

We can use +/(f, f) as a norm.
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Examples

m example 1: for the set of vectors x € R", with the
standard vector addition and scalar multiplication,
we can define the inner product

(X,y) = iixi Yi

m example 2: for the set of square integrable

functions L? is the set of functions f : R — R for
which [*_ f(x)?dx exists and is finite, we can define
the inner product

(f.9)= [ fx)g(xdx
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Orthogonality

m Orthogonal: two elements of a vector space Sare
orthogonal if f # g implies (f,g) =0.

m this is a generalization of the idea of perpendicular
vectors

m the key is that f, when projected onto g is zero (and
visa versa).

m inner product acts like a projection operation

m g set of elements of a vector space are orthogonal
iff each pair is orthogonal.

m a set of elements {fi} of a vector space are
orthonormal if < fi, f; >= &; the Kronecker delta.
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Basis

A basis for a vector space Sis a set of elements fi € S
such that

m the elements {fi} span S, i.e., any element of Scan
be written as a linear combination of the f;.

m the elements {f;} are linearly independent, i.e. we
cannot write any element f; as a linear combination
of the other elements of the basis.

A basis is useful because
m it provides a way of representing elements of S
® uniquely
m efficiently (no redundancy)
m constructively (Gram-Schmidt)
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Generalized Fourier transform

Take a complete orthonormal system of functions
{@(x)}, such that they form a basis for L. e.g.

(@,9;) = g
for some inner product (-,-).

A function f(x) may be represented as
F(X) = _Z)aacﬂ(X)

Then we can define the Generalized Fourier Transform
by
a = (f,q)
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Generalized Fourier transform

00 =3 aax

<iiai<n,<Pj>

= _iai (@, @)

d;

(f, @)
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Generalized Fourier transform
a = <f7(ﬂ>

f(X)ziiacn(X)=ii<f,m>cn(X)

NB: where i is replaced by a continuous index term s,
we might write

f(x) = / a(s)p(x;s)ds

[ (f,0063)) @lx 9)ds
a(s) = (f,9(x;s))
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Generalization of P-R

<i%am(x), J;a,-cp,- (x)>
- i%a;<cg(x),}20ajcpj(X)>
_ %%zxm (@ (X), 9 (X))
— i%%aiajéij

— i;af
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Alternate transforms

m Mostly use L% horm to define inner product

< f,g>= /_oo f(X)g*(x) dx

m alternate basis functions are then equivalent to
alternative kernels in integrals

m Also (f, f) then corresponds to energy in the signal f
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Examples of integral transforms

Name kernel g(-) transform of f(t)
Tdentity 5(s—1) F(s :/m f(t)8(s—t) dt
Fourier g 'St / f(t)e"tdt
Laplace e s, fort>0| F(s) = / f(t)e Stdt
Hilbert T[(Sl_ D / f(t dt
Mellin z-1 F(2) = / £t )tz—ldt
Fourier Cosine | cogst) F(s) = /_ o:o f(t) cogst)dt
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Examples of integral transforms

Name basis functions

Identity Delta functions 6(s—t)

Fourier Complex exponentials et = cogst) + i sin(st)
Laplace Real exponentials e

Hilbert Hyperbola <

Mellin Power functions t**

Fourier Cosine | Cosines cogst)
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Transforms

Simple transforms are changes of basis

m in R" we can write these x = Ay

m in more complex spaces, the transform can be
represented by an operator, e.g. 7(f)=a0.

Why would one change basis?

Diagonalization!
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Eigenvalues and Eigenvectors

Take a square n x n matrix A, then a non-zero vector in
X € R" is called an eigenvector if it satisfies

AX = AX

for some scalar A, which is called an eigenvalue of A.
X is said to be the eigenvector corresponding to A.

Similarly for any vector space Sand operator 4:S— S,
we can define eigenvalues and eigenvectors, such that
they satisfy

Af = Af

where f € Sis non-zero, and A € R.
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Diagonalization

Definition: A matrix is diagonalizable if there exists an
invertible matrix P such that

P'AP=D

where D is a diagonal matrix, e.qg.

dl 0

do

0 .

We s_ay that P diagoncilizes A
Notation: D = diag(d;,dy,...,dy).
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Diagonalization

Given an nx n matrix A with n linearly independent
eigenvectors {vi,...,vn}, then A will be diagonalizable,
and P has as columns the eigenvectors. The diagonal
matrix D will then have the corresponding eigenvalues
along its diagonal. That is

PAP=D

where Av, = A\ and §

B L M O

P=1|vi|Vv2|---|Vvy | and D =
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Diagonalization

Diagonalization is useful for studying dynamical systems

m it decouples the elements

m makes it possible to study a bunch of independent
simple (1D) systems, rather than one complex,
high-dimensional system.

m long term behavior of system comes down to a single
dominant eigenvalue/eigenvector.

In a continuous state space, the same is true, though
now the basis set is uncountably infinite.
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FT as diagonalization

Consider a linear-time invariant system (or filter) as an
operator on the vector x

m Tmpulse response defines a linear operator
Af =axf, where ais the impulse response.

m Complex exponentials are eigenvectors of 4, e.q.
g2tst A(S)eiZT‘St,
m A(s) is the transfer function.

m The Fourier transform is a diagonalization
operation.

m The diagonalization is performed using an inner
product with the eigenvectors (which form an
orthonormal basis)
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What if?

What happens if we aren't interested in linear,
time-invariant systems?
m many real systems are non-linear

m many real systems have transients (i.e. they are not
time-invariant)

m Is the Fourier transform still the right approach?
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