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1. 0 marks Use the technique of Lagrange multipliers to maximizeV = xyz for x, y, z ≥ 0 subject to the pair of
constraints

xy + yz + zx = 1

x+ y + z = 3

Solution: Introduce slack variablesα, β, γ to express the inequalitiesx, y, z ≥ 0 asx − α2 = 0, y − β2 = 0,
z − γ2 = 0. We employ Lagrange multipliers to form the new objective function

L = xyz + λ1(xy + yz + zx− 1) + λ2(x+ y + z − 3) + λ3(x− α2) + λ4(y − β2) + λ5(z − γ2).

First we deal with the last three terms. The equation∂L/∂α = 0 yieldsλ3(−2α) = 0, so eitherλ3 = 0 or α = 0.
Similarly eitherλ4 = 0 or β = 0, and eitherλ5 = 0 or γ = 0. If any of λ3, λ4, λ5 is nonzero, then at least one of
α, β, γ is zero and therefore at least one ofx, y, z is zero. HenceV = 0. Sincex, y, z ≥ 0, this corresponds to a
global minimum. So we must takeλ3 = λ4 = λ5 = 0 for a maximum.

Note that ifx = y = z = v, say, then the second constraint impliesv = 1 and the first constraintv2 = 1/3, a
contradiction. Hence we can’t havex = y = z.

The equation∂L/∂x = 0 provides
yz + λ1(y + z) + λ2 = 0.

By symmetry we have also
zx+ λ1(z + x) + λ2 = 0.

Subtraction yields
z(y − x) + λ1(y − x) = 0 or (z + λ1)(y − x) = 0.

Hence either
x = y or z = −λ1.

By symmetry
y = z or x = −λ1

and
z = x or y = −λ1.

We can’t have any two ofx = y, y = z, z = x, for thenx = y = z. Similarly we can’t have all ofz = −λ1, x = −λ1,
y = −λ1. Hence we must have

x = y, x = −λ1, y = −λ1, that is x = y = −λ1,

or
y = z = −λ1,

or
z = x = −λ1.
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With the first possibility, the second constraint givesz = 3− 2x and the first constraintx2 + 2xz = 1, so

x2 + 2x(3− 2x) = 1 or 3x2 − 6x+ 1 = 0.

Hence

x = 1±
√
6

3
and therefore y = 1±

√
6

3
and z = 1∓ 2

√
6

3
.

Now 1− 2
√
6/3 < 0, so to getV > 0 we must choose

x = y = 1−
√
6

3
, z = 1 +

2
√
6

3

which leads to

V = xyz = −1 +
4
√
6

9
.

The same value arises from the cyclic permutations

y = z = 1−
√
6

3
, x = 1 +

2
√
6

3

and

z = x = 1−
√
6

3
, y = 1 +

2
√
6

3
.

2. 0 marks MaximizeV = x2 + 2y2 − z2 subject to

x2 + y2 + z2 ≤ 1

Solution: Use a slack variableu to express the constraint as an equality

x2 + y2 + z2 + u2 = 1.

This leads to a new objective function

L = V + λ
(

x2 + y2 + z2 + u2 − 1
)

.

The condition∂L/∂x = 0 gives

2x+ λ.2x = 0, so 2x(1 + λ) = 0 and x = 0 or λ = −1.

Partial differential with respect toy, z, u in turn give similarly

y = 0 or λ = −2;

z = 0 or λ = 1;

u = 0 or λ = 0.

By the constraint, we can’t have all ofx, y, z, u equal to zero. Hence we must have either

λ = −1, y = z = u = 0, or

λ = −2, x = z = u = 0, or

λ = 1, x = y = u = 0, or

λ = 0, x = y = z = 0.

In the first case, the constraint givesx2 = 1 andV = 1. Similarly the other three cases in turn yieldy2 = 1 andV = 2;
z2 = 1 andV = −1; u2 = 1 andV = 0. Thus the maximum isV = 2, and this arises whenx = z = 0 andy = ±1.
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3. 5 marks Which of the following are functionals of the functiony(x) (label yes or no).
Solution:

(a) y(0) + 4 yes

(b)
dy

dx

∣

∣

∣

∣

0

yes (assuming the derivative exists)

(c) min{y(x)|0 ≤ x ≤ 1} yes (assuming the minimum exists)

(d)
∫

1

0

y dx yes

(e)
∫

π

0

[

dny

dxn

]3

f(x) dx yes (assuming the derivatives exist)

4. 1 mark Given theL2-norm ||f ||2 =
√

∫ 1

0
f(x)2 dx on the vector spaceL2[0, 1], describe (in one sentence) the

ε-neigbourhood of the functiony = x.

Solution:

Theε-neigbourhood of the functiony = x is the set of functions within distanceε of y = x, where distance
is defined using theL2 norm of the difference between two functions.

5. 4 marks Find an upper bound for the minimum of the functional

J{y} =

∫

1

0

y2y′2 dx,

subject toy(0) = 0 andy(1) = 1 using the trial functions

yε(x) = xε,

with ε > 1/4. Justify your argument.

Solution:

yε = xε

y′
ε

= εxε−1

and so

J{yε} =

∫

1

0

y2y′2 dx

= ε2
∫

1

0

x4ε−2 dx

= ε2
[

x4ε−1

4ε− 1

]1

0

=
ε2

4ε− 1

dJ{yε}
dε

=
2ε(4ε− 1)− 4ε2

(4ε− 1)2

At a stationary point the derivative is zero and so we requirethe denumerator ofdJ/dε to be zero, i.e.,

2ε2 − ε = 2ε(2ε− 1) = 0,

soε = 0 or 1/2, but only the latter solution is greater than1/4, and so this is a stationary point.
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We can see it is a minimum by taking the second derivative withrespect toε to get

d2J{yε}
dε2

=
d

dε

4ε2 − 2ε

(4ε− 1)2

=
2

(4ε− 1)3

which is positive forε > 1/4.

CalculatingJ{yε} = ε
2

4ε−1
at the minimum we getJ{y∗} = 1/4, which is an upper bound on the true minimum of the

functional, because the functional applies over a wider class of possible functionsy, and we know that there may be a
better one.
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