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1. Find the extremals of the following functionals

(a) F{y} = / Vy(1 + y"2) de with end-pointgy(—1) = 0 andy(0) = 0.

Solution: The problem is autonomous, so look at the Hamiltonian

2
H= y f - flyy) = N [ — Vy(l+y'?) = const

y(1+y7)
Putting everything over the same denominator we get

yy”? —y(L+y?)

H= = const
y(1+y")
or more simply
H = . = const
y(1+y"?)

Multiplying both sides by/y(1 + y’?) and squaring we get

v =Pyl +y”).

There are two cases here:

i. y(z) = 0: Given that this solution fits the end points-1) = 0 andy(0) = 0, this provides a valid extremal.
Note that this makes sense, because the integrand in natireegind sa”{y} has a lower bound at zero,
which is achieved by this solution.

ii. Inthe second case

/ﬁd‘”:/dm

y/c2—1 = xz+b

z+b 2+ 2
y = —_— .
Y 2c

However, note thag(0) = 0 and this function has minimun? for real constants, so it cannot satisfy the
end-point constraints.
Extra notes: In fact there are some subtle issues in this problem. Inlyliche functional requireg > 0 to
ensure it is real. This limits the type of variations we cootthsider, and one could easily doubt whether the
Euler-Lagrange equations apply here. However, these caasbéved if one rewrites the function in terms of a
new variable: such thaty = u2. The functional becomes

-0
F{u} = Vu?(1 + du?u'?) de,
J-1
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and the Hamiltonian reduces to
—Uu

- V1+ duzu?’
leading to two possible solutions corresponding to the thava.
(b) m F{y} = / — y? — y)e?® dr with end-pointg/(0) = 0 andy(1) = e~ .
Solution: The Euler-Lagrange equation

O] _0f
dz oy Oy dx ve

+ (2y 4 1)621 — 2y” 2z + 42// 21 (2y 4 1)62“' =0
Dividing by the two times (non-zero) exponential
'+ +y=-1/2
Solving the homogenous D&’ + 2y’ + y = 0 we get
y = Ae " + Bre ™™
The particular solution to the inhomogenous equation is
y=-1/2,

So the final solution is
y=Ae ¥+ Bre " —1/2.

Now y(0) = 0soA = 1/2, and
y=e ¥/2+ Bxe " —1/2.

Whenz = 1 we havey(1) = ¢!

SO
y=e /24 Be ! —1/2=¢""

Hence
B=¢/2+1/2
so the final solution is 1
y=735 [e7" 4+ (e+ Dae” — 1] .

2. Find the extremals of the following functionals

2
(@) [Smankd (o). 20} = [ (s -2 447 - )
Jay
Solution:
There are two dependent variables in this problem, and sextinemals must satisfy the two E-L equations

d(ory o _
dz \ 0y’ E)y -
d of of  _ 0
02') 0z
wheref (y, z, 1/, 2') = 2yz — 2y + y> — 2’2, Taking the appropriate derivatives, the E-L equation®bex

£ (2y)—2z+4y = 2y 4+4y—22z = 0
L(-22) -2y = —22"-2y = 0
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Divide both equations by 2, and differentiate the first eiquratwice 3. Surface of minimum area: Consider a soap bubble suspended between two parallel roiecédut dis-
@ y placed rings of radiug, andr; (see the figure for a clearer view). Ignoring gravity and otheernal forces, the shape
Yy +2y -2 =0 of the soap bubble will minimize the surface area. Use theWas of Variations to explain the shape this bubble will
take.
Combine with the second equation to eliminate
)

yW 2y +y=0

which is a 4th order homogenous linear ODE. The solutionkbgibf the forme?*, where satisfies the charac- <> """ rings

teristic equation

MioxZ41=0 k; _N

and so\ = =i, &, giving solutions

X
y(x) = (1 + cox) sinz + (c3 + cax) cos(x)
y
where the constants, ¢z, ¢3 andey are determined by the end-points, ang y” + 2y.
ta [ Hint: rotational symmetry can be used to reduce this to femhwith one dependent variable.]
®) Flat)} = | dide + dogs + dsr dt Solution: Note that the problem is circularly symmetric about thaxis, so we shall describe the problem in cylindrical
ty

Solution: We get one Euler-Lagrange equation for each of the dependenblesy; so co-ordinates
d (of af 0 r = rcosf
e 67]1 — 67(11 = y = rsinf
d (0of of z = u
— (=L )-= =0
dx \ 0¢ Jqa . ) ) . . -
d [of of Under symmetry, the soap film will also be circularly symriteibout thez axis®, so we can describe it as a surface
— ({)_> e = 0 of revolution, i.e., it can be described by its radius prafile which is then rotated about theaxis to get the surface.
dr \ Ogs a3 The area of such a surface is simply the perimeter of a cifaladiusr, multiplied by the small distance’1 + r/2dz

which give, respectively, (as for geodesic problems), resulting in an area infegal

z1
d. . 0 A{r} :/ 2/ 1+ 12 dz
92 —q3 =
dx 20
d .
—I(‘Il +aq) = 0 By observation, this functional is almost the same as thetfonal describing a hanging chain (only the constants
d ) differ). As aresulty(z) will be shaped like a catenoid (a catenary of revolutioe), i.
—qn—q¢ = 0
dx r—c
r(z) = beosh | =——
or r(z) = bcosh < 5 )
G2—qgs = 0 whereb andc are chosen to satisfy the end points;) = r; fori = 0, 1.
Gt+g = 0 Note that, as for catanery, there can be multiple, or zentisois. If the rings are too far apart, the bubble bursts!
Gi—¢ = 0 Noteson circular symmetry: In the above we have deduced from the form of problem thatsitdir@ular symmetry,
) ) and therefore assumed that the solution must also possesythmetry. This is a natural assumption, but in the best
Integrating these three equations we get S X
form should perhaps be justified, which we can do as follows.
G2—q3 = 1in more detail, consider the surface to be made up of a seffasstums of cones with small height given by, and radius at the top and bottomrdk)
Gi4+q = e andr(z + dz) respectively. The surface area of the frustum of a cone ¢eeht t p: / / mat hwor | d. wol f ram cont Coni cal Frustum htni )is

g1 —q2 = c3 dA = 7(r(z) + (2 + dz))\/dz? + (r(z + dz) — r(2))2 = 2mr(2)\/ 1 + 1"2dz

. . . . o where we use the first order Taylor approximatids + dz) = 7(z) + r’(z)dz, and note that the>2 term will be negligable for smallz.
Solve homogenous equations (Where the RHS is Zero) by t@iﬂﬂg‘D' and then noting thats = +q so that Alternatively, we can arrive at the integral by direct calesation of the surface integral in cylindrical co-ordesati.e., the surface area will be

g3 must be zero, as must be the derivativeofindg., so that only leaves the possible solution whgrandg.

are constants, ang = 0. A= //r(s)deds = 21r/r(s) ds = 27r/r(z)\/1 +1r2dz.

where we remove the integral with respecttbecause there is no dependence on angle, and the secondlisigp the same derivation for computing arc
lengths in geodesics that we used in class.
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We can construct a vertical plane through thaxis, so that it bisects each of the two rings. Now consideproblem 4. RitzZ’sMethod: Use Ritz's method to find an approximate, non-trivial santio the differential equation
of the minimal surface on the RHS of the plane and the LHS. Thblpms are simply reflected versions of each other,
and so the minimal surface on the LHS and RHS must be reflentib@ach other. However, we can construct a infinite Y+ ly/ + Ay =0,

x

number of such planes at any angle relative tostkexis, and the only way the solution can preserve symmeioytab

all of them is for the solution to also have circular symmetry in the domainz € [0, 1] wherey(1) = 1, and hence determine an approximate valug tifat has a solution Hints:

ote that the equation cal be written in the fol
—d (11 ) + Ay =0
dz 2 2 ’

and find the corresponding integral for which this is the Elilegrange equation. Once you have a variational problem,
write use the trial function

Ytrial = @ + bz? + cat,
which we have chosen because the solution is expected todeearfunction. ]

Solution: Note that the Euler-Lagrange equation could arise from atianal problem of the form: find the extremals
of

o1
Fl{y} = /0 zy'? — \zy? da.

(Note that the\ might arise from a isoperimetric constraint of the quglmyz = G.) The end-point conditiop(1) = 1
means that the trial function must have- b + ¢ = 1. Substituting the trial function we get

1
F{y} = /0 z(2bz + 4cw3)2 + )\x(a b+ cx4)2 da
1
- / 4022 + 16bca® + 16¢%c” — Na*x + b2a® + *a® + 2aba® + 2bex” + 2aca®) dx
0
a® b ab | be ac)]

, 8 .
¥+ obet2 A=+ —+—+—-+—+—
[+3c+c <2+6+10+2+4+3

; ; 1. 4
b2+ gbc +2¢2 -\ (Ebz + %bc + ﬁ(:z)

usinga = —b — ¢. We can differentiate with respectt@ndb to get
oF 8 1 5 A 8 BA
— 2+ —c— A =b+—c)=(2-% -—Ze
% b+3c A<3b+1zc> ( 3>b+(3 12)(’
OF ) 8 5 8 8 5 8\
D 4(,+§b—/\(ﬁb+1—5(,)7(3—5)1)4—(4—%)(,

and each of these must be zero to find an extremal. Mutiplyah@quation by($ — 23) and the bottom by2 — %)
and subtract the second from the first, and we rendduem the equation. The result is

{GB (-2 63

302 — 128X\ 4 640 = 0,

where either = 0 or

which has two solutions

A

- 64% VTG 5 7841 or 36.8825.

Note that this is actually an approximate eigenvalue of thensLiouville problem defined at the start. The true
eigenvalue is 5.7832 so we have done reasonably well usigpproach.
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5. Higher order derivatives: find the extremal of the following functional

1
J{y} = / y'"? — 240zy da,
0

subject toy(0) = 0,4/(0) = 1/2,y(1) = 1 andy/(1) = 1/2.
Solution: The Euler-Poisson equation is

af daf & af 2o,
x+2dzzy =0,

dy  dx 0y’ EW -
so the DE is
y@ =120z,

which has solution
y(z) = 2° + c32° + coa® + 1 + co.

We determine the constants to fit the end point conditions
e y(0) = 0 implies thatcy = 0
e y/(0) = 1/2implies thatc; = 1/2
o y(1)=1impliesl+c3+co+1/2=1
e /(1) = 1implies5 + 3cg +2co +1/2=1/2

The last two equations give

c3+c = —1/2
3c3+2ca = —5H

Solving we get

co 0

c1 1/2

C2 7/2

c3 = —4
So L

y=a" —42® + ~2? + 57

The results are plotted in the following figure.
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