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1. Find the extremals of the following functionals

(a) F{y} =

∫ 0

−1

√

y(1 + y′2) dx with end-pointsy(−1) = 0 andy(0) = 0.

Solution: The problem is autonomous, so look at the Hamiltonian

H = y′
∂f

∂y′
− f(y, y′) =

yy′2
√

y(1 + y′2)
−
√

y(1 + y′2) = const

Putting everything over the same denominator we get

H =
yy′2 − y(1 + y′2)
√

y(1 + y′2)
= const

or more simply

H =
−y

√

y(1 + y′2)
= const

Multiplying both sides by
√

y(1 + y′2) and squaring we get

y2 = c2y(1 + y′2).

There are two cases here:

i. y(x) = 0: Given that this solution fits the end pointsy(−1) = 0 andy(0) = 0, this provides a valid extremal.
Note that this makes sense, because the integrand in non-negative, and soF{y} has a lower bound at zero,
which is achieved by this solution.

ii. In the second case
∫

1
√

y/c2 − 1
dy =

∫

dx

2c2
√

y/c2 − 1 = x+ b

y =

(

x+ b

2c

)2

+ c2.

However, note thaty(0) = 0 and this function has minimumc2 for real constants, so it cannot satisfy the
end-point constraints.

Extra notes: In fact there are some subtle issues in this problem. Implicitly, the functional requiresy ≥ 0 to
ensure it is real. This limits the type of variations we couldconsider, and one could easily doubt whether the
Euler-Lagrange equations apply here. However, these can beresolved if one rewrites the function in terms of a
new variableu such thaty = u2. The functional becomes

F{u} =

∫ 0

−1

√

u2(1 + 4u2u′2) dx,
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and the Hamiltonian reduces to
H =

−u√
1 + 4u2u′2

,

leading to two possible solutions corresponding to the two above.

(b) 3 marks F{y} =

∫ 1

0

(y′2 − y2 − y)e2x dx with end-pointsy(0) = 0 andy(1) = e−1.

Solution: The Euler-Lagrange equation

d

dx

∂f

∂y′
− ∂f

∂y
=

d

dx
2y′e2x + (2y + 1)e2x = 2y′′e2x + 4y′e2x + (2y + 1)e2x = 0

Dividing by the two times (non-zero) exponential

y′′ + 2y′ + y = −1/2

Solving the homogenous DEy′′ + 2y′ + y = 0 we get

y = Ae−x +Bxe−x

The particular solution to the inhomogenous equation is

y = −1/2,

So the final solution is
y = Ae−x +Bxe−x − 1/2.

Now y(0) = 0 soA = 1/2, and
y = e−x/2 +Bxe−x − 1/2.

Whenx = 1 we havey(1) = e−1 so

y = e−1/2 +Be−1 − 1/2 = e−1

Hence
B = e/2 + 1/2

so the final solution is

y =
1

2

[

e−x + (e+ 1)xex − 1
]

.

2. Find the extremals of the following functionals

(a) 3 marks F{y(x), z(x)} =

∫

x2

x1

(2yz − 2y2 + y′2 − z′2) dx

Solution:
There are two dependent variables in this problem, and so theextremals must satisfy the two E-L equations

d

dx

(

∂f

∂y′

)

− ∂f

∂y
= 0

d

dx

(

∂f

∂z′

)

− ∂f

∂z
= 0

wheref(y, z, y′, z′) = 2yz − 2y2 + y′2 − z′2. Taking the appropriate derivatives, the E-L equations become

d

dx
(2y′)− 2z + 4y = 2y′′ + 4y − 2z = 0
d

dx
(−2z′)− 2y = −2z′′ − 2y = 0
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Divide both equations by 2, and differentiate the first equation twice

y(4) + 2y′′ − z′′ = 0

Combine with the second equation to eliminatez′′

y(4) + 2y′′ + y = 0

which is a 4th order homogenous linear ODE. The solutions will be of the formeλx, whereλ satisfies the charac-
teristic equation

λ4 + 2λ2 + 1 = 0

and soλ = ±i,±i, giving solutions

y(x) = (c1 + c2x) sinx+ (c3 + c4x) cos(x)

where the constantsc1, c2, c3 andc4 are determined by the end-points, andz = y′′ + 2y.

(b) F{q(t)} =

∫ t2

t1

q̇1q̇2 + q̇2q3 + q̇3q1 dt

Solution: We get one Euler-Lagrange equation for each of the dependentvariablesqi so

d

dx

(

∂f

∂q̇1

)

− ∂f

∂q1
= 0

d

dx

(

∂f

∂q̇2

)

− ∂f

∂q2
= 0

d

dx

(

∂f

∂q̇3

)

− ∂f

∂q3
= 0

which give, respectively,

d

dx
q̇2 − q̇3 = 0

d

dx
(q̇1 + q3) = 0

d

dx
q1 − q̇2 = 0

or

q̈2 − q̇3 = 0

q̈1 + q̇3 = 0

q̇1 − q̇2 = 0

Integrating these three equations we get

q̇2 − q3 = c1

q̇1 + q3 = c2

q1 − q2 = c3

Solve homogenous equations (where the RHS is zero) by takingq1 = q2, and then noting thatq3 = ±q̇2 so that
q3 must be zero, as must be the derivative ofq1 andq2, so that only leaves the possible solution whereq1 andq2
are constants, andq3 = 0.

3

Class Exercise 3 solutions Variational Methods and Optimal Control

3. 2 marks Surface of minimum area: Consider a soap bubble suspended between two parallel concentric, but dis-
placed rings of radiusr0 andr1 (see the figure for a clearer view). Ignoring gravity and other external forces, the shape
of the soap bubble will minimize the surface area. Use the Calculus of Variations to explain the shape this bubble will
take.

x

z

rings

y

[ Hint: rotational symmetry can be used to reduce this to problem with one dependent variable.]

Solution: Note that the problem is circularly symmetric about thez axis, so we shall describe the problem in cylindrical
co-ordinates

x = r cos θ

y = r sin θ

z = u

Under symmetry, the soap film will also be circularly symmetric about thez axis∗, so we can describe it as a surface
of revolution, i.e., it can be described by its radius profiler(t) which is then rotated about thez axis to get the surface.
The area of such a surface is simply the perimeter of a circle of radiusr, multiplied by the small distance

√
1 + r′2dz

(as for geodesic problems), resulting in an area integal1

A{r} =

∫

z1

z0

2πr
√

1 + r′2 dz

By observation, this functional is almost the same as the functional describing a hanging chain (only the constants
differ). As a result,r(z) will be shaped like a catenoid (a catenary of revolution), i.e.,

r(z) = b cosh

(

x− c

b

)

whereb andc are chosen to satisfy the end pointsr(zi) = ri for i = 0, 1.

Note that, as for catanery, there can be multiple, or zero solutions. If the rings are too far apart, the bubble bursts!

Notes on circular symmetry: In the above we have deduced from the form of problem that it has circular symmetry,
and therefore assumed that the solution must also possess this symmetry. This is a natural assumption, but in the best
form should perhaps be justified, which we can do as follows.

1In more detail, consider the surface to be made up of a series of frustums of cones with small height given bydz, and radius at the top and bottom ofr(z)
andr(z + dz) respectively. The surface area of the frustum of a cone (e.g.seehttp://mathworld.wolfram.com/ConicalFrustum.html) is

dA = π(r(z) + r(z + dz))
√

dz2 + (r(z + dz)− r(z))2 = 2πr(z)
√

1 + r′2dz

where we use the first order Taylor approximationr(z + dz) = r(z) + r′(z)dz, and note that thedz2 term will be negligable for smalldz.
Alternatively, we can arrive at the integral by direct consideration of the surface integral in cylindrical co-ordinates, i.e., the surface area will be

A =

∫ ∫

r(s) dθ ds = 2π

∫

r(s) ds = 2π

∫

r(z)
√

1 + r′2 dz.

where we remove the integral with respect toθ because there is no dependence on angle, and the second step follows the same derivation for computing arc
lengths in geodesics that we used in class.
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We can construct a vertical plane through thez-axis, so that it bisects each of the two rings. Now consider the problem
of the minimal surface on the RHS of the plane and the LHS. The problems are simply reflected versions of each other,
and so the minimal surface on the LHS and RHS must be reflections of each other. However, we can construct a infinite
number of such planes at any angle relative to thex-axis, and the only way the solution can preserve symmetry about
all of them is for the solution to also have circular symmetry.
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4. Ritz’s Method: Use Ritz’s method to find an approximate, non-trivial solution to the differential equation

y′′ +
1

x
y′ + λy = 0,

in the domainx ∈ [0, 1] wherey(1) = 1, and hence determine an approximate value ofλ that has a solution. [Hints:
note that the equation can be written in the form

d

dx
(xy′) + λxy = 0,

and find the corresponding integral for which this is the Euler-Lagrange equation. Once you have a variational problem,
write use the trial function

ytrial = a+ bx2 + cx4,

which we have chosen because the solution is expected to be aneven function. ]

Solution: Note that the Euler-Lagrange equation could arise from a variational problem of the form: find the extremals
of

F{y} =

∫ 1

0

xy′2 − λxy2 dx.

(Note that theλ might arise from a isoperimetric constraint of the form
∫ 1

0 xy2 = G.) The end-point conditiony(1) = 1
means that the trial function must havea+ b+ c = 1. Substituting the trial function we get

F{y} =

∫ 1

0

x(2bx+ 4cx3)2 + λx(a + bx2 + cx4)2 dx

=

∫ 1

0

4b2x3 + 16bcx5 + 16c2c7 − λ(a2x+ b2x5 + c2x9 + 2abx3 + 2bcx7 + 2acx5) dx

=

[

b2 +
8

3
bc+ 2c2 − λ

(

a2

2
+

b2

6
+

c2

10
+

ab

2
+

bc

4
+

ac

3

)]

= b2 +
8

3
bc+ 2c2 − λ

(

1

6
b2 +

5

12
bc+

4

15
c2
)

usinga = −b− c. We can differentiate with respect tob andb to get

∂F

∂b
= 2b+

8

3
c− λ

(

1

3
b+

5

12
c

)

=

(

2− λ

3

)

b+

(

8

3
− 5λ

12

)

c

∂F

∂c
= 4c+

8

3
b− λ

(

5

12
b+

8

15
c

)

=

(

8

3
− 5λ

12

)

b+

(

4− 8λ

15

)

c

and each of these must be zero to find an extremal. Mutiply the top equation by
(

8
3 − 5λ

12

)

and the bottom by
(

2− λ

3

)

and subtract the second from the first, and we removeb from the equation. The result is

c

[

(

8

3
− 5λ

12

)2

−
(

4− 8λ

15

)(

2− λ

3

)

]

= 0,

where eitherc = 0 or
3λ2 − 128λ+ 640 = 0,

which has two solutions

λ =
64±

√
2176

3
≃ 5.7841 or 36.8825.

Note that this is actually an approximate eigenvalue of the Sturm-Liouville problem defined at the start. The true
eigenvalue is 5.7832 so we have done reasonably well using this approach.
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5. 2 marks Higher order derivatives: find the extremal of the following functional

J{y} =

∫ 1

0

y′′2 − 240xy dx,

subject toy(0) = 0, y′(0) = 1/2, y(1) = 1 andy′(1) = 1/2.

Solution: The Euler-Poisson equation is

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′
= 2x+ 2

d2

dx2
y′′ = 0,

so the DE is
y(4) = 120x,

which has solution
y(x) = x5 + c3x

3 + c2x
2 + c1x+ c0.

We determine the constants to fit the end point conditions

• y(0) = 0 implies thatc0 = 0

• y′(0) = 1/2 implies thatc1 = 1/2

• y(1) = 1 implies1 + c3 + c2 + 1/2 = 1

• y′(1) = 1 implies5 + 3c3 + 2c2 + 1/2 = 1/2

The last two equations give

c3 + c2 = −1/2

3c3 + 2c2 = −5

Solving we get

c0 = 0

c1 = 1/2

c2 = 7/2

c3 = −4

So

y = x5 − 4x3 +
7

2
x2 +

1

2
x.

The results are plotted in the following figure.
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