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1. Solution:

e The constraint is aon-holonomic.
e The Lagrange multiplier i8(¢), and the new functional is
-
J{y,z} = / v+ 2Ny —2+y)de
Jao

e The Euler-Lagrange equations are

oh_don
dy dx 0y
oh _doh _
0z dx 0%
oh _ddh _
ON  dx 9\
which give
2y+A—XN = 0
2z—X = 0
y—z+y = 0
e The second equations gives
=2z

substitute into the first equation and we get

2y +22—22'=0
Differentiate and rearrange and we get

Yy =—2'"+2"
and we substitute these two into into the last equation to get
Y —z+y=—2"+2"—2—2+2=0
which simplifies to the linear homogenous ODE
2" —22=0

This has solutions
z=rc1 eV (tz(fﬁ“’
We also know
y=—z+2 = c1(—1+vV2)eV® 4 cy(—1 — V2)e vV
which we can see satisfy the constraints.
We would need boundary conditions to determine the values afidc,.
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2.

w

Given that L
Py = [ 07 =)
with the constraint ory(z) that
[ ViTie=vs
and the end conditiong0) = 0 andy(1) =1, purove thatF'{y(x)} achieves its minimum value for= z.

Solution: The thing to note in this problem is that the distance of agttdine from (0,0) to (1, 1) is v/2,
and hence the only possible curve that meets the constargtraight line.

As there is no possible variation, we cannot use the Eulgrdrege equations, and the solution is thgid extremal,
y=x.

. The maximum entropy principle is an extension of Laplaceisgiple of insufficient reason, which in essence says we

should not assume things that are not supported by eviddfareinstance, in probability, unless we have reason to
suspect otherwise, we would assume events are equally,likel., the probability of heads coming up on a coin toss
is 1/2.

Maximum entropy extends this by noting that if we maximize {®hannon) entropy of a probability distribution
constrained by the facts we know about the distribution, \ederive the estimate of that distribution which makes
the least assumptions about the distribution that arepjpstied by the data.

The Shannon entropy of a distribution with two variableséfined to be
H{p} = // p(z,y) Inp(z,y) dz dy,

wherep(z,y) is the probability density function, and the integral is otfee set where(z,y) > 0. Note that all
probability density functions satisfy the constraint that

//p(amy)dxdy: 1,

because probabilities must always add to one.

Given only the information that the variablés, y) lie in the unit squarg0, 1] x [0, 1], derive the maximum entropy
distribution.

Solutions: We seek to maximum the functional given by entropy, subjexdy ¢o the constraints that
p(z,y) = 0 outside the unit square, andt [ p(z,y) dxdy = 1, so

1 1
max H{p} = / / p(,y) Inp(z,y) — Ap(z, y) dz dy,
0 0

The Euler-Lagrange equation is

Note thatf does not depend on the partial derivatigeor p,, and so the Euler-Lagrange equation reduces to
of =Inp+1-A=0
p

The resultis that
p(x,y) = const.
Given the constraintnt [ p(z,y) dz dy = 1 we can see the constant must be 1, so
p(z,y) = 1.

This is usually called the Uniform Distribution.
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4. In Newton's aerodynamical problem we minimized resistance

"R
x
iy = | —
{v} /01+y"2 ’

subject toy(0) = L andy(R) = 0 (andy’ < 0 andy” > 0).

In nose-cone design this is sometimes approximated by asguhat the nose-cone will be long and thin, igawill
be large (and negative in our formulation). In that case, \ag approximate + y'2 by y'2 and simplify the problem
as shown in tutorial 2.

Now, using this approximation, consider an alternativenfakation of the problem where we don't specify the length
of the nose-cone, we specify the maximum surface area (oéthed the "wetted area”) of the nose-cone. Using the
approximation, derive the optimal shape of the nose-coderthis constraints.

Solution: The surface area of a surface of revolution (aboutthgis) is given by
S{r} = 27r/ rv1+r2dz,
o

wherer is the radius at height
In the co-ordinates of our problem= z, andy = z, so

S{y) :%/U'Lxmdy,
However, we note that becauge< 0 we can invert the function describing the shape of the nose-to get
S{y) :2w/OLdex,
When we apply the largg’ approximation this becomes

st e |

and we will constrain this to be equal th This is effectively an isoperimetric constraint, so thelgem becomes
minimize

L
zy da,

R
T
F{y} = /n 2 + \zy’ dr.
Note also that the end-point conditions were loosened sonlyerequirey(R) = 0.
Note there is n@ term in the integral so the Euler-Lagrange equations are

4 of _of 0
dz oy Oy
d [—2z
%[11’3 +)\$] = 0
-2
x[yTB+A = .

Note that atz = 0, the above is zero, but it must be constant for:athnd this means that the constant= 0, and so
-2
7] =0
which givenz > 0 in turn implies that
2

yf3+/\:
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or
y' = const,

o)
Yy =mz+c.

Note that the value of is fixed at zero, bug(0) is not fixed, so the natural boundary condition is
i ::1;[;3+AH =0,
=0 Yy =0

y’
but this is automatically true given the form §U£ so we gain no information from this condition.

If the section of the nose-cone is straight, then the nose-@® a true cone. Then the length of the cone will be
determined by the surface area constraint, where we knowxhet formula for the surface area of a cone (ignoring
the base) is obtained by unwrapping it to get a segment otkecso

S =nRVL?+ R2,

if the cone has lengtth. From the constraint on length, we obtdin= y(0), and from this and the condition that
y(R) = 0 we may obtain the two constanisandc.

Note that we should really have added into the formulatienstirface area of any flat area at the tip of the nose-cone.
However, we already knew that when we take the laygapproximation, there will be no such area, and we see our
resulting solution has no such area either.

Extras: If, instead, we had restricted the volume of the nose comesdiution would be different. The volume of a
solid of rotation is L
oy .
Vir=n / r2V1+r2dz =7 / %y da.
Jro Jo
If we put this into the objective functional with a Lagrangeltiplier we get

R .
F{y} = /0 UI_/Z + Az?y dr.

with y(R) = 0. The Euler-Lagrange equations give

d of d [—2z 2
— = ~ Az“| =0,
dz Oy’ dx [ y'3 AT ’
and againg% = 0 atz = 0 (either because it contains a factorzobr through the natural boundary condition), and so
we get
—2x >
e + Az = 0
yr:ﬁ — 7)\17—1/2
Yy = clx2/3 + co,

where the values of the constants again arise from the @omistr Consider the contrast of these three Igfg®lutions

« Boundary constraints only ~ y*/3
e Surface area constraint~ y
o \olume constraint: ~ y3/2
The family of these solutions ~ y“ for « € [0, 1] is called the power-series or sometimes parabaloid nose even

though formally only the case = 1/2 is a parabola. Note also that the last of the three isn’t corawed so violates
our conditions for the shape.




