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1. Solution: 6 marks

• The constraint is anon-holonomic.

• The Lagrange multiplier isλ(t), and the new functional is

J{y, z} =

∫ x1

x0

y2 + z2 + λ(y′ − z + y) dx

• The Euler-Lagrange equations are

∂h

∂y
− d

dx

∂h

∂ẏ
= 0

∂h

∂z
− d

dx

∂h

∂ż
= 0

∂h

∂λ
− d

dx

∂h

∂λ̇
= 0

which give

2y + λ− λ′ = 0

2z − λ = 0

y′ − z + y = 0

• The second equations gives
λ = 2z

substitute into the first equation and we get

2y + 2z − 2z′ = 0

Differentiate and rearrange and we get
y′ = −z′ + z′′

and we substitute these two into into the last equation to get

y′ − z + y = −z′ + z′′ − z − z + z′ = 0

which simplifies to the linear homogenous ODE

z′′ − 2z = 0

This has solutions
z = c1e

√
2x + c2e

−
√
2x

We also know
y = −z + z′ = c1(−1 +

√
2)e

√
2x + c2(−1−

√
2)e−

√
2x

which we can see satisfy the constraints.
We would need boundary conditions to determine the values ofc1 andc2.
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2. Given that

F{y(x)} =

∫ 1

0

(y′2 − y2) dx,

with the constraint ony(x) that
∫ 1

0

√

1 + y′2 dx =
√
2,

and the end conditionsy(0) = 0 andy(1) = 1, prove thatF{y(x)} achieves its minimum value fory = x.

Solution: 1 mark The thing to note in this problem is that the distance of a straight line from(0, 0) to (1, 1) is
√
2,

and hence the only possible curve that meets the constraint is a straight line.

As there is no possible variation, we cannot use the Euler-Lagrange equations, and the solution is therigid extremal,
y = x.

3. The maximum entropy principle is an extension of Laplace’s principle of insufficient reason, which in essence says we
should not assume things that are not supported by evidence.For instance, in probability, unless we have reason to
suspect otherwise, we would assume events are equally likely, e.g., the probability of heads coming up on a coin toss
is 1/2.

Maximum entropy extends this by noting that if we maximize the (Shannon) entropy of a probability distribution
constrained by the facts we know about the distribution, we will derive the estimate of that distribution which makes
the least assumptions about the distribution that aren’t supported by the data.

The Shannon entropy of a distribution with two variables is defined to be

H{p} =

∫ ∫

p(x, y) ln p(x, y) dx dy,

wherep(x, y) is the probability density function, and the integral is over the set wherep(x, y) > 0. Note that all
probability density functions satisfy the constraint that

∫ ∫

p(x, y) dx dy = 1,

because probabilities must always add to one.

Given only the information that the variables(x, y) lie in the unit square[0, 1] × [0, 1], derive the maximum entropy
distribution.

Solutions: 3 marks We seek to maximum the functional given by entropy, subject only to the constraints that
p(x, y) = 0 outside the unit square, andint

∫

p(x, y) dx dy = 1, so

maxH{p} =

∫

1

0

∫

1

0

p(x, y) ln p(x, y)− λp(x, y) dx dy,

The Euler-Lagrange equation is
∂f

∂p
− ∂

∂x

∂f

∂px
− ∂

∂y

∂f

∂py
= 0

Note thatf does not depend on the partial derivaticepx or py, and so the Euler-Lagrange equation reduces to

∂f

∂p
= ln p+ 1− λ = 0

The result is that
p(x, y) = const.

Given the constraintint
∫

p(x, y) dx dy = 1 we can see the constant must be 1, so

p(x, y) = 1.

This is usually called the Uniform Distribution.
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4. In Newton’s aerodynamical problem we minimized resistance

F{y} =

∫ R

0

x

1 + y′2
dx,

subject toy(0) = L andy(R) = 0 (andy′ ≤ 0 andy′′ ≥ 0).

In nose-cone design this is sometimes approximated by assuming that the nose-cone will be long and thin, soy′ will
be large (and negative in our formulation). In that case, we may approximate1 + y′2 by y′2 and simplify the problem
as shown in tutorial 2.

Now, using this approximation, consider an alternative formulation of the problem where we don’t specify the length
of the nose-cone, we specify the maximum surface area (oftencalled the ”wetted area”) of the nose-cone. Using the
approximation, derive the optimal shape of the nose-cone under this constraints.

Solution: The surface area of a surface of revolution (about thez axis) is given by

S{r} = 2π

∫ r1

r0

r
√

1 + r′2 dz,

wherer is the radius at heightz.

In the co-ordinates of our problem,r = x, andy = z, so

S{y} = 2π

∫ L

0

x
√

1 + dx/dy2 dy,

However, we note that becausey′ < 0 we can invert the function describing the shape of the nose-cone to get

S{y} = 2π

∫ L

0

x
√

1 + y′2 dx,

When we apply the largey′ approximation this becomes

S{y} ≃ 2π

∫ L

0

xy′ dx,

and we will constrain this to be equal toS. This is effectively an isoperimetric constraint, so the problem becomes
minimize

F{y} =

∫ R

0

x

y′2
+ λxy′ dx.

Note also that the end-point conditions were loosened so we only requirey(R) = 0.

Note there is noy term in the integral so the Euler-Lagrange equations are

d

dx

∂f

∂y′
− ∂f

∂y
= 0

d

dx

[−2x

y′3
+ λx

]

= 0

x

[−2

y′3
+ λ

]

= c1.

Note that atx = 0, the above is zero, but it must be constant for allx, and this means that the constantc1 = 0, and so

x

[−2

y′3
+ λ

]

= 0,

which givenx > 0 in turn implies that
−2

y′3
+ λ = 0,

3

Class Exercise 4 solutions Variational Methods and Optimal Control

or
y′ = const,

so
y = mx+ c.

Note that the value ofx is fixed at zero, buty(0) is not fixed, so the natural boundary condition is

∂f

∂y′

∣

∣

∣

∣

x=0

= x

[−2

y′3
+ λ

]∣

∣

∣

∣

x=0

= 0,

but this is automatically true given the form of∂f∂y′
, so we gain no information from this condition.

If the section of the nose-cone is straight, then the nose-cone is a true cone. Then the length of the cone will be
determined by the surface area constraint, where we know theexact formula for the surface area of a cone (ignoring
the base) is obtained by unwrapping it to get a segment of a circle, so

S = πR
√

L2 +R2,

if the cone has lengthL. From the constraint on length, we obtainL = y(0), and from this and the condition that
y(R) = 0 we may obtain the two constantsm andc.

Note that we should really have added into the formulation the surface area of any flat area at the tip of the nose-cone.
However, we already knew that when we take the largey′ approximation, there will be no such area, and we see our
resulting solution has no such area either.

Extras: If, instead, we had restricted the volume of the nose cone, the solution would be different. The volume of a
solid of rotation is

V {r} = π

∫ r1

r0

r2
√

1 + r′2 dz ≃ π

∫ L

0

x2y′ dx.

If we put this into the objective functional with a Lagrange multiplier we get

F{y} =

∫ R

0

x

y′2
+ λx2y′ dx.

with y(R) = 0. The Euler-Lagrange equations give

d

dx

∂f

∂y′
=

d

dx

[−2x

y′3
+ λx2

]

= 0,

and again∂f
∂y′

= 0 atx = 0 (either because it contains a factor ofx or through the natural boundary condition), and so
we get

−2x

y′3
+ λx2 = 0

y′3 = −λx−1/2

y = c1x
2/3 + c2,

where the values of the constants again arise from the constraints. Consider the contrast of these three largey′ solutions

• Boundary constraints onlyx ∼ y4/3

• Surface area constraintx ∼ y

• Volume constraintx ∼ y3/2

The family of these solutionsx ∼ yα for α ∈ [0, 1] is called the power-series or sometimes parabaloid nose cone, even
though formally only the caseα = 1/2 is a parabola. Note also that the last of the three isn’t convex, and so violates
our conditions for the shape.
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