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1. Find the coordinates of the point(s) nearest the origin on the surfacexyz = a3, for x, y, z ≥ 0.

Show (using the transversal conditions and the Euler-Lagrange equations) that if we were to draw a line between this
point and the origin, it would be a transversal of minimum length between the origin and the surface.

Solution: We know from previous work that shortest-paths in Euclideanspace are straight lines, which arise from
minimizing the functional

F{x, y, z} =

∫ S

0

ds =

∫ T

0

√

x′2 + y′2 + z′2 dt.

Using the free end-point conditions for several dependent variables we get

n
∑

k=1

pkδqk −Hδt = 0 wherepk =
∂L

∂q̇k
andH =

n
∑

k=1

q̇kpk − L

From this we can define

px =
∂L

∂x′
=

x′

√

x′2 + y′2 + z′2

py =
∂L

∂y′
=

y′
√

x′2 + y′2 + z′2

pz =
∂L

∂z′
=

z′
√

x′2 + y′2 + z′2

H = x′
∂L

∂x′
+ y′

∂L

∂y′
+ z′

∂L

∂z′
− L =

x′2 + y′2 + z′2
√

x′2 + y′2 + z′2
−
√

x′2 + y′2 + z′2

= 0

so the end-point condition is
pxδx+ pyδy + pzδz = 0.

Specify the surfaceΓ parametrically by(xΓ(u, v), yΓ(u, v), zΓ(u, v))), then we can write

δx = δu
∂xΓ

∂u
+ δv

∂xΓ

∂v

δy = δu
∂yΓ
∂u

+ δv
∂yΓ
∂v

δz = δu
∂zΓ
∂u

+ δv
∂zΓ
∂v

and sopxδx+ pyδy + pzδz is

δu
√

x′2 + y′2 + z′2

[

dx

ds

∂xΓ

∂u
+

dy

ds

∂yΓ
∂u

+
dz

ds

∂zΓ
∂u

]

+
δv

√

x′2 + y′2 + z′2

[

dx

ds

∂xΓ

∂v
+

dy

ds

∂yΓ
∂v

+
dz

ds

∂zΓ
∂v

]

.
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We can varyδu andδv independently, and the above terms must all be zero, so we gettwo conditions

d

ds
(x, y, x) · ru =

dx

ds

∂xΓ

∂u
+

dy

ds

∂yΓ
∂u

+
dz

ds

∂zΓ
∂u

= 0
d

ds
(x, y, x) · rv =

dx

ds

∂xΓ

∂v
+

dy

ds

∂yΓ
∂v

+
dz

ds

∂zΓ
∂v

= 0,

whereru andrv of the two tangential vectors to the surface.

ru =

(

∂xΓ

∂u
,
∂yΓ
∂u

,
∂zΓ
∂u

)

rv =

(

∂xΓ

∂v
,
∂yΓ
∂v

,
∂zΓ
∂v

)

The condition above, simply stated says that the extremal curve will join the surface in such a way that its dot product
with the tangential vectors is zero, and hence the extremal will be normal to the surface at the point of contact.

Now recall that the normal to a parameterized surface(xΓ(u, v), yΓ(u, v), zΓ(u, v))) can be found by taking the cross
productsru × rv of the two tangential vectors (simply this can be understoodby noting that the cross-product will be
at right angles to both tangential vectors):

Or we can derive the normal by noting that the surface can be expressed as a constraitg(z, y, z) = xyz − a3 = 0, and
that the normal direction can be derived by gradg, i.e.,

∇g =

(

∂g

∂x
,
∂g

∂y
,
∂g

∂z

)

= (yz, xz, xy).

Noting the condition that the extremal curve must join the surface as a normal, and that the extremal curve will be a
straight line through the origin, i.e., it will have the parametric form(αs, βs, γs), we see that the point of contact with
the surface will have normal

(yz, xz, xy) = (βγs2, αγs2, αβs2),

and the only way the line’s (parameterized) slope(α, β, γ) can match this is ifα = β = γ, i.e., we meet the surface at
the point(a, a, a).

Of course there is a much simpler solution to this problem. Consider a set of expanding spheres. Obviously, the radii of
these spheres form geodesics, and equally clearly the sphere will touch the surface at a tangent, and hence the extremal
curve of interest is the radii of the sphere to the point whereit just touches the surface (which will be a normal to the
surface). This corresponds to minimizingx2 + y2 + z2 subject toxyz = a3 and we know the solution to this.

2. Optimal Control: 5 marks Minimize

F{u} =

∫ 1

0

u2 dt

subject to

ẋ1 = u− x2

ẋ2 = −u

and

x1(0) = 2

x1(1) = 1

x2(0) = 0

x2(1) = 1
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Solution: Including the constraints via Lagrange mulitpliersp1 andp2 we get seek to optimize

J{u, x1, x2} =

∫

1

0

u2 + p1(ẋ1 − u+ x2) + p2(ẋ2 + u) dt.

The Euler-Lagrange equations are

2u− p1 + p2 = 0

ṗ1 = 0

ṗ2 − p1 = 0.

Solving the second two we get

p1 = c1

p2 = c1t+ c2.

Substitutingp1 andp2 from above into the first E-L equation2u = p1 − p2 gives

u =
p1 − p2

2
= −

1

2
c1t+

1

2
(c1 − c2).

We can substitute this into the system DEs and we get

ẋ1 = −
1

2
c1t+

1

2
(c1 − c2)− x2

ẋ2 =
1

2
c1t−

1

2
(c1 − c2),

which we solve to get

x2 =
1

4
c1t

2 −
1

2
(c1 − c2)t+ c3

ẋ1 = −
1

2
c1t+

1

2
(c1 − c2)−

1

4
c1t

2 +
1

2
(c1 − c2)t− c3

=
1

2
(c1 − c2)−

1

4
c1t

2 −
1

2
c2t− c3

x1 = c4 +

[

1

2
(c1 − c2)− c3

]

t−
1

12
c1t

3 −
1

4
c2t

2.

Substitute the end-point conditionsx1(0) = 2, x1(1) = 1, x2(0) = 0 andx2(1) = 1 and we get four equations

c4 = 2

c4 +

[

1

2
(c1 − c2)− c3

]

−
1

12
c1 −

1

4
c2 = 1

c3 = 0

−
1

4
c1 +

1

2
c2 + c3 = 1

From which we getc3 = 0 andc4 = 2, and two remaining equations

5

12
c1 −

3

4
c2 = −1

−
1

4
c1 +

1

2
c2 = 1

Solving we getc1 = 12 andc2 = 8, which determinesu, x1 andx2, e.g.,

u = −
1

2
c1t+

1

2
(c1 − c2) = −6t+ 2.

3

Class Exercise 5 solutions Variational Methods and Optimal Control

Hence the integral

F{u} =

∫ 1

0

u2 dt =

∫ 1

0

(−6t+ 2)2, dt =

∫ 1

0

36t2 − 24t+ 4, dt =
[

12t3 − 12t2 + 4t
]1

0
= 4

3. Optimal Control: 5 marks Find the minimum value of

F{u} = x(1) +

∫

1

0

αu2 dt,

whereα > 0, x(0) = 0, x(1) free, and
ẋ = u.

How does the answer change if we add the condition that|u(t)| ≤ 1?

Solution: Augment the functional with a Lagrange multiplier to get

J{u} = x(1) +

∫

1

0

αu2 + p(ẋ− u) dt.

The Euler-Lagrange equations will be

ṗ = 0

2αu− p = 0.

Clearlyp = const, and henceu = p/2α also constant. We can substitute this into the system DEẋ = u to get

x =
p

2α
t+ k.

Using the initial condition we getk = 0. The natural boundary condition for the free end point att1 is

∑

i

(

∂φ

∂xi

+
∂f

∂ẋi

)

δxi

∣

∣

∣

∣

t=t1

+

(

∂φ

∂t
−H

)

δt

∣

∣

∣

∣

t=t1

= 0

where the final time is fixed ast1 = 1 soδt = 0 the terminal costφ(x) = x, and∂f/∂ẋ = p so the condition is
(

∂φ

∂x
+ p

)
∣

∣

∣

∣

t=1

= (1 + p)|t=1
= 0,

butp is constant, sop = −1 for all t, and hence

x =
−1

2α
t,

and

u =
−1

2α
,

and the minimal value of the integral

F{u} = x(1) +

∫

1

0

αu2 dt =
−1

2α
+

∫

1

0

1

4α
dt =

−1

2α
+

1

4α
=

−1

4α
.

If |u(t)| ≤ 1 then there are two possibilities.

(a) If 1

2α
≤ 1 then the above solution holds.

(b) If 1

2α
> 1 then the control cannot beu = −1/2α, and so will sit on the boundary, i.e.,u = −1. so this will give

the solutionx = −t, and

F{u} = −1 +

∫ 1

0

αdt = −1 + α
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