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1. Find the coordinates of the point(s) nearest the origin ersthfaceryz = a3, for z,y, 2 > 0.

Show (using the transversal conditions and the Euler-lrgg@quations) that if we were to draw a line between this
point and the origin, it would be a transversal of minimungitnbetween the origin and the surface.

Solution: We know from previous work that shortest-paths in Euclidspace are straight lines, which arise from

minimizing the functional
S T
F{z,y,z} = / ds = / Va2 4y + 22 dt.
0 0

Using the free end-point conditions for several dependariables we get

> prdqx — Hot = 0 wherepy, = 0—L andH = gipx — L
k=1 dx k=1

From this we can define
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so the end-point condition is
P20 + pydy + p20z = 0.

Specify the surfac€ parametrically by(zr (u, v), yr(u, v), zr(u, v))), then we can write

ox = du (f)% + ov (Z;—;
0y = du 80% +ov %
0z = du %—ZJ + v %
and sop,0x + pydy + p.oz is
Su dx dzr  dyOdyr  dz dzp v dx dxr  dydyr dz dzp
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We can varyyu anddv independently, and the above terms must all be zero, so we/gebnditions

4 aya) e = O dydyn | dzdz

a5 O e = 5y T ds u | ds ou
-0

d (@,9,7) T dx dzr  dydyr  dz Ozp

v v ds v  ds Qv ds Ov

ds
= 0,

wherer,, andr, of the two tangential vectors to the surface.
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The condition above, simply stated says that the extrenrakouwill join the surface in such a way that its dot product
with the tangential vectors is zero, and hence the extrerfidd@normal to the surface at the point of contact.

Now recall that the normal to a parameterized surfag€u, v), yr(u, v), zr(u, v))) can be found by taking the cross
productsr,, x r,, of the two tangential vectors (simply this can be understnodoting that the cross-product will be
at right angles to both tangential vectors):

Or we can derive the normal by noting that the surface can peesged as a constraitz, y, z) = zyz — a® = 0, and
that the normal direction can be derived by ggade.,

Noting the condition that the extremal curve must join thage as a normal, and that the extremal curve will be a
straight line through the origin, i.e., it will have the paretric form(as, 8s,~s), we see that the point of contact with
the surface will have normal

(yz, 2, y) = (5752~, 04“/52-, aﬁsz),
and the only way the line’s (parameterized) sl¢pes, v) can match this is ift = 8 = v, i.e., we meet the surface at
the point(a, a, a).
Of course there is a much simpler solution to this problermditer a set of expanding spheres. Obviously, the radii of
these spheres form geodesics, and equally clearly theespliletouch the surface at a tangent, and hence the extremal
curve of interest is the radii of the sphere to the point wilitgjtest touches the surface (which will be a normal to the
surface). This corresponds to minimizing + y? + 22 subject taryz = a® and we know the solution to this.

. Optimal Control: Minimize

1
F{u} = / u?dt
JO
subject to

T = u-—xg

and

z1(0) =
zi(l) =
22(0) =
z9(1) =

=




Class Exercise 5 solutions

Variational Methods and Optimal Control

Solution: Including the constraints via Lagrange mulitpligisandp, we get seek to optimize
1
J{u,z1, 22} = / u? 4 p1 (21 — u + 22) + pa(@z + u) dt.
0

The Euler-Lagrange equations are

2u—p1+p2 = 0
1= 0
p2—p1 = 0.
Solving the second two we get
P =
p2 = cit+ca.

Substitutingp; andp, from above into the first E-L equatidu = p; — p2 gives

— p: 1 1
sz = 7§C1t+ 5(01 — CQ),

We can substitute this into the system DEs and we get

1 1
—set+ s(e1 —c2) — w2

E Tty
S S )
To = 201/ 201 C2),
which we solve to get
1 1
Ty = _/Iclt2 — 5(61 —c)t+c3
A 1 1 1 1
T = 7§cll‘+ E(cl — ) — chtz + 5(01 —co)t —c3
1 1 1
= 5(61 —c9) — chtz - 562t —c3
1 1 . 1
1 = e+ [5(@ — ) — 03] t— eq“ - Zcztz.

Substitute the end-point conditioms(0) = 2, z1(1) = 1, z2(0) = 0 andz2(1) = 1 and we get four equations

cy = 2
. 1( ) 1 1o
[ 3 1 Co c3 1201 402 =
cz = 0
L+ ie+ 1
—=c —C g =
1 1 2(2 3
From which we gets; = 0 ande, = 2, and two remaining equations
5
T2 = -1
1 1
—74 + 32 = 1
Solving we get; = 12 andc, = 8, which determines, z; andz-, e.g.,
1 1
u= 7§c1t + §(c1 —cp) = —6t+2.
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Hence the integral

1 1 1
F{u}:/ u? dt = / (—6t+2)27dt:/ 362 — 24t + 4,dt = [126* — 12¢° + 4], = 4
JO JO JOo

. Optimal Control: Find the minimum value of

1
F{u} = z(1) +/ au? dt,
0
wherea > 0, 2(0) = 0, z(1) free, and
T =u.

How does the answer change if we add the condition|th@}| < 1?
Solution: Augment the functional with a Lagrange multiplier to get

1
J{u} =z(1) + / au? + p(@ — u) dt.
0
The Euler-Lagrange equations will be
p =0
200 —p = 0.
Clearlyp = const, and hence: = p/2« also constant. We can substitute this into the systerm: BEu to get
P

D
t+ k.
2a +

Using the initial condition we get = 0. The natural boundary condition for the free end poirtt as
dp  Of 9o
— + — ) 0z — —H)|dt
; (01 * 81) R (0t >

where the final time is fixed a@s = 1 sodt = 0 the terminal cosp(z) = z, andd f /0& = p so the condition is

T =

=0

t=ty

¢ _ -
(22)] = tees o

butp is constant, sp = —1 for all ¢, and hence

T = ;lf
2a
and
—1
%s
and the minimal value of the integral
Ly, —1 | -1 1 -1
F{u}:’x(l)+/0 au dt:?u OEdt:ﬁ+R:E'

If [u(t)| < 1 then there are two possibilities.

(a) If i < 1 then the above solution holds.

(b) If % > 1 then the control cannot be= —1/2c, and so will sit on the boundary, i.e.,= —1. so this will give
the solutionz = —¢, and

1
F{u}:71+/0 adt=-14+a«




