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1: Conservation laws: use Neother’s theorem to relate the symmetries of the pandtd the conservation laws that

apply to the system. More specifically, consider the systefoliows:

Kinetic energy

N

T= %m(a’cz +92) = %mlzéz
Potential energy
V =mg(l —y) = mgl(1 — cos @)
The Lagrangian is
L(¢, ) = %171124)2 —mgl(1 — cos @),

and the action integral is

ity .
F{¢} = /t <%7n12c‘>2 —mgl(1 — cos O)) dt.
0

—

(x(t), y(t))

Determine whether the Lagrangian has translation (in spatiene) or rotation invariance, and thence determine the

conservation laws that apply.
Solution:

e The system clearlgoes not possess translational symmetry in thdirection (as there isaterm in the potential
energy). There is no explicit term, but there is an implicit constraint thet + y? = 2, and so the system does
not possess translation symmetry either, and hence momentunoigonserved.

e The systentoes possess time invariance, and so eneésgponserved.

e The systentoes not possess rotational invariance (seedtep term in the functional), and so angular momentum

isnot conserved.

2. Broken extremals. Minimize the functional

F{z} = /02(1 +1)%?

dt

subject to the end-point conditions thad) = 1 andz(2) = 0. [Hint: consider the possibility of broken extremals.]

Solution: The Euler-Lagrange equations are
daof of

dtdr  Ox
% [2(¢ + 1)@ + 2(d + 1)%4]
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2(¢ + 1)d? +2(¢ +1)% = const
2% 4+ 242 4243 + 44? + 20 = const
433 + 6% +2& = const

Soi = const, and therefore the solutionis= at + b, i.e., the solutions to the Euler-Lagrange equations aaégit

lines. Naively, we just choose the straight line fra() to z(2) to minimize the functional, i.e.,
1 12‘
r=1—-=1,
2b

which hasi = —1/2, and hence,

2 9.0 21 1
F{z} = b4 1)% dt = —dt=-.
= [@rvpaa= [ fa-g
which may seem small, but is actually only a local minimum.

Consider a function with a potential cornertat ¢., and assume slopes of the line a@fe_ ) = a1, andi(t; ) = as
on either side of the corner. The Erdman-Weierstrass cocoraditions are

of _ of
. R [
4a3 +6a3 +2a1 = 4a3 + 6a3 + 2a,
ay(4a? +6a; +2) = ag(4al +6ax +2)
2a1(a1 +1)(2a1 +1) = 2as(az +1)(2a2 +1) (1)
and
H I H‘t:’
aof Lof
T — = -
o i oz i
(403 + 647 + 2a1)ar — (af +2d3 +a}) = (4a3+ 643 + 2a2)as — (a3 + 243 + a3)
a?(3a? +4a; +1) = a3(3a3 +4ax+1) )
a2(3ar + 1)(a1 +1) = a2(3az+1)(az +1) 3)

We can satisfy (3) and (1) by taking = 0 or —1. If we consider these as possible extremals we immediatalythat
whena = 0 we geti = 0, and wheru = —1 we getl + & = 0, and so

2
F{z} = /0 (& +1)%2dt =0,

and given that the squared terms cannot be negative, tiie iminimal of the functional.
The extremal is made of straight sections with slope zerel athere being two equally good solutions matching the

end-point with one corner, as shown in the figure. If we allodiional corners, then there are many more possibilities.

XA
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3. Optimal control: Express the following in a form of an optimal control problémwhich the Pontryagin Maximum
Principle can be applied:

(a) Minimize
10
F{z} = / 2 dt
Jo

subject to
|Z| <1, andz(0) =1

T -
/jc'zdt:zl
0

2(0) = 1, andi(0) = 1, andz(T) = —2

(b) Minimize T subject to

and

Solutions

(a) The constrainz| < 1 is not in a suitable form. We need to first write it as a 1st ofdlEr Start by writing the
equivalent constraint
#?<1

and then add a slack variable to create an equation and we get
P2 4+at=1
This is a second order DE, and we need to rewrite in terms ofiiceer DEs, so make the substitution
r = T
xry = T

and then we get the equations

Cb] = T2

22 = £V1-a?

The functional also needs to be rewritten as

10
F{z1,22} = / z2 dt
Jo

and likewise the end-point constraint.
(b) This is a time minimization problem so we seek to minimilze integral ofoT 1dt. Including a Lagrange
multiplier for the isoperimetric constrai[j'&T &2 dt = 4 we need to minimize

"
F{:::}:/U 1— i dt

Again, this involves second order terms so we use the sanmegetaf co-ordinates tQr+, z2) as above to write
this as minmize

T
F{xy, 22} :/ 1— Ao dt
0

subject to
21(0) = 1, andz2(0) = 1, andzy(T) = —2
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4. Optimal control: A person is considering a lifetime plan of investment andeexditure. With initial saving$' and no
other income other than from an investment with a fixed irseratec > 0, this investor’s capital weath at tintes
«(t) and is governed by

T=or—7T

wherer = r(t) is the investors rate of expenditure. The immediate enjoymee to expenditure at ratét) results in
utility U (r), which we will take to bd/(r) = /r. Future enjoyment at timeis discounted by ~?*. Thus our investor
wishes to maximize

J{T}:/O e PU(r) dt

subject toi = ax — r, and the initial condition:(0) = 1. Also, at the final time, any remaining capital is wasted, so
letz(T') = 0. There are additional implicit constraints: we cannot barrso capital cannot become negative, and we
cannot expend a negative amounty$g > 0 for all ¢.

Use the Pontryagin Maximum Principle to find the optimal exditure strategy:(¢).
Solutions: Given a minimization problem in the form: minimize functin

ty
F=/ fo(txow) @,
Jio

subject to constraints = f(¢,x, u), or more fully,
Ty = fl(t,x., “)‘

The Pontryagin Maximum Principle (PMP) states thati¢t), an admissible control vector that transféfs x) to
a target(t1,x(t1)) and trajectoryx(t) corresponding tau(¢), in order thatu(t) be optimal, it is necessary that there
existsp(t) = (p1(t), p2(t), ..., pn(t)) and a constant scalas such that

e p andx are the solution to the canonical system

. OH and OH

X = —— — 7=

op P= "%

e where the Hamiltonian i& = )
e H(x,u,p,t) > H(x,u,p,t) for all alternate controls

o all boundary conditions are satisfied

n
i

"o pifi withpo = —1

The state variable here is and the control variable is The functions of interest here (noting that the problem is a
maximization problem, and the PMP is written in terms of mmiiziation) are

folz,r) = —e Plrl/?
fi(z,r) = azx—r

so the Hamiltonian is
H = plax — 1) + e Ptrl/2,

The canonical DEs are

. oH .
& = — =oax—r, the state equation
op

. OH

= —— = —ap.
p 9 P

The second equation gives
p=Ae .
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Maximizing H with respect to, means we take

OH L g 12
E =-p+ 5(, T =0.
So
— Bt
R VC - e
2p
ola—B)t
T 24
o2la—p)t
T Taa

We can then substitute this into the state equation ta:gies.,

T = ar-—7r
e2a—p)t
= ar — ———F5—
4A2
e2a—p)t
z = Be* -

T 4A%(a - 28)
However, we want:(0) = 1 so

1

B-—0+«——— =1
4A2(a — 20)
B - 1+ 4A4%(a —26)
T 4A2(a—-2P)
and we want:(7") = 0 so (assumingr — 23 # 0)
2(a—B)T
BeoT _ _© _
¢ T 1A%(a-2p) 0
(1444%a —2p))eT = Ho=AT
4A% (o — 23) ela=2)T _
2 ela—2H)T _

from which we can derivel, and thence is

1+ 4A4%(a —28)
4A4%(a — 2P)
ola—28)T

e(@=28T _ 1

B =

The figure shows the derivedandz curves.

4(a —28)
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Note that the objective function can be calculated to give

T
/ e Ppt/2 gy
0

T ela=p)t
/ e g
o 2A

T N
_ / A -2y,
Jo 24

ela=28)T _ 1
2(a—2P)A

J{r}

t




