
Variational Methods and Optimal Control
Class Exercise 6 solutions

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

1: Conservation laws: use Neother’s theorem to relate the symmetries of the pendulum to the conservation laws that
apply to the system. More specifically, consider the system as follows:

Kinetic energy

T =
1

2
m(ẋ2 + ẏ2) =

1

2
ml2φ̇2

Potential energy

V = mg(l− y) = mgl(1− cosφ)

The Lagrangian is

L(φ, φ̇) =
1

2
ml2φ̇2 −mgl(1− cosφ),

and the action integral is

F{φ} =

∫ t1

t0

(

1

2
ml2φ̇2 −mgl(1− cosφ)

)

dt.
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Determine whether the Lagrangian has translation (in spaceor time) or rotation invariance, and thence determine the
conservation laws that apply.

Solution:

• The system clearlydoes not possess translational symmetry in they direction (as there is ay term in the potential
energy). There is no explicitx term, but there is an implicit constraint thatx2 + y2 = l2, and so the system does
not possessx translation symmetry either, and hence momentum isnot conserved.

• The systemdoes possess time invariance, and so energyis conserved.

• The systemdoes not possess rotational invariance (see thecosφ term in the functional), and so angular momentum
is not conserved.

2. Broken extremals: Minimize the functional

F{x} =

∫ 2

0

(ẋ+ 1)2ẋ2 dt

subject to the end-point conditions thatx(0) = 1 andx(2) = 0. [Hint: consider the possibility of broken extremals.]

Solution: The Euler-Lagrange equations are

d

dt

∂f

∂ẋ
− ∂f

∂x
= 0

d

dt

[

2(ẋ+ 1)ẋ2 + 2(ẋ+ 1)2ẋ
]

= 0
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2(ẋ+ 1)ẋ2 + 2(ẋ+ 1)2ẋ = const

2ẋ3 + 2ẋ2 + 2ẋ3 + 4ẋ2 + 2ẋ = const

4ẋ3 + 6ẋ2 + 2ẋ = const

So ẋ = const, and therefore the solution isx = at+ b, i.e., the solutions to the Euler-Lagrange equations are straight
lines. Naively, we just choose the straight line fromx(0) to x(2) to minimize the functional, i.e.,

x = 1− 1

2
t,

which hasẋ = −1/2, and hence,

F{x} =

∫ 2

0

(ẋ+ 1)2ẋ2 dt =

∫ 2

0

1

16
dt =

1

8
.

which may seem small, but is actually only a local minimum.

Consider a function with a potential corner att = tc, and assume slopes of the line areẋ(t−c ) = a1, andẋ(t−c ) = a2
on either side of the corner. The Erdman-Weierstrass cornerconditions are

∂f

∂ẋ

∣

∣

∣

∣

t−
c

=
∂f

∂ẋ

∣

∣

∣

∣

t+
c

4a31 + 6a21 + 2a1 = 4a32 + 6a22 + 2a2

a1(4a
2
1 + 6a1 + 2) = a2(4a

2
2 + 6a2 + 2)

2a1(a1 + 1)(2a1 + 1) = 2a2(a2 + 1)(2a2 + 1) (1)

and

H |t−
c

= H |t+
c

ẋ
∂f

∂ẋ
− f

∣

∣

∣

∣

t−
c

= ẋ
∂f

∂ẋ
− f

∣

∣

∣

∣

t+
c

(4a31 + 6a21 + 2a1)a1 − (a41 + 2a31 + a21) = (4a32 + 6a22 + 2a2)a2 − (a42 + 2a32 + a22)

a21(3a
2
1 + 4a1 + 1) = a22(3a

2
2 + 4a2 + 1) (2)

a21(3a1 + 1)(a1 + 1) = a22(3a2 + 1)(a2 + 1) (3)

We can satisfy (3) and (1) by takingai = 0 or−1. If we consider these as possible extremals we immediately note that
whena = 0 we getẋ = 0, and whena = −1 we get1 + ẋ = 0, and so

F{x} =

∫ 2

0

(ẋ+ 1)2ẋ2 dt = 0,

and given that the squared terms cannot be negative, this is the minimal of the functional.

The extremal is made of straight sections with slope zero, or-1, there being two equally good solutions matching the
end-point with one corner, as shown in the figure. If we allow additional corners, then there are many more possibilities.

x

t

1

1 2

2
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3. Optimal control: Express the following in a form of an optimal control problemto which the Pontryagin Maximum
Principle can be applied:

(a) Minimize

F{x} =

∫ 10

0

x2 dt

subject to
|ẍ| ≤ 1, andx(0) = 1

(b) MinimizeT subject to
∫ T

0

ẍ2 dt = 4

and
x(0) = 1, andẋ(0) = 1, andẋ(T ) = −2

Solutions

(a) The constraint|ẍ| ≤ 1 is not in a suitable form. We need to first write it as a 1st orderDE. Start by writing the
equivalent constraint

ẍ2 ≤ 1

and then add a slack variable to create an equation and we get

ẍ2 + α2 = 1

This is a second order DE, and we need to rewrite in terms of first order DEs, so make the substitution

x1 = x

x2 = ẋ

and then we get the equations

ẋ1 = x2

ẋ2 = ±
√

1− α2

The functional also needs to be rewritten as

F{x1, x2} =

∫ 10

0

x2
1 dt

and likewise the end-point constraint.

(b) This is a time minimization problem so we seek to minimizethe integral of
∫ T

0
1 dt. Including a Lagrange

multiplier for the isoperimetric constraint
∫ T

0
ẍ2 dt = 4 we need to minimize

F{x} =

∫ T

0

1− λẍ2 dt

Again, this involves second order terms so we use the same change of co-ordinates to(x1, x2) as above to write
this as minmize

F{x1, x2} =

∫ T

0

1− λẋ2
2 dt

subject to
x1(0) = 1, andx2(0) = 1, andx2(T ) = −2
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4. Optimal control: A person is considering a lifetime plan of investment and expenditure. With initial savingsS and no
other income other than from an investment with a fixed interest rateα > 0, this investor’s capital weath at timet is
x(t) and is governed by

ẋ = αx− r

wherer = r(t) is the investors rate of expenditure. The immediate enjoyment due to expenditure at rater(t) results in
utility U(r), which we will take to beU(r) =

√
r. Future enjoyment at timet is discounted bye−βt. Thus our investor

wishes to maximize

J{r} =

∫ T

0

e−βtU(r) dt

subject toẋ = αx − r, and the initial conditionx(0) = 1. Also, at the final time, any remaining capital is wasted, so
let x(T ) = 0. There are additional implicit constraints: we cannot borrow, so capital cannot become negative, and we
cannot expend a negative amount, sor(t) ≥ 0 for all t.

Use the Pontryagin Maximum Principle to find the optimal expenditure strategyr(t).

Solutions: Given a minimization problem in the form: minimize functional

F =

∫ t1

t0

f0 (t,x,u) dt,

subject to constraintṡx = f(t,x,u), or more fully,

ẋi = fi(t,x,u).

The Pontryagin Maximum Principle (PMP) states that foru(t), an admissible control vector that transfers(t0,x0) to
a target(t1,x(t1)) and trajectoryx(t) corresponding tou(t), in order thatu(t) be optimal, it is necessary that there
existsp(t) = (p1(t), p2(t), . . . , pn(t)) and a constant scalarp0 such that

• p andx are the solution to the canonical system

ẋ =
∂H

∂p
and ṗ = −∂H

∂x

• where the Hamiltonian isH =
∑n

i=0 pifi with p0 = −1

• H(x,u,p, t) ≥ H(x, û,p, t) for all alternate controlŝu

• all boundary conditions are satisfied

The state variable here isx, and the control variable isr. The functions of interest here (noting that the problem is a
maximization problem, and the PMP is written in terms of minimization) are

f0 (x, r) = −e−βtr1/2

f1 (x, r) = αx − r

so the Hamiltonian is
H = p(αx− r) + e−βtr1/2.

The canonical DEs are

ẋ =
∂H

∂p
= αx − r, the state equation

ṗ = −∂H

∂x
= −αp.

The second equation gives
p = Ae−αt.
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MaximizingH with respect tor, means we take

∂H

∂r
= −p+

1

2
e−βtr−1/2 = 0.

So

r1/2 =
e−βt

2p

=
e(α−β)t

2A

r =
e2(α−β)t

4A2

We can then substitute this into the state equation to getx, i.e.,

ẋ = αx− r

= αx− e2(α−β)t

4A2

x = Beαt − e2(α−β)t

4A2(α− 2β)

However, we wantx(0) = 1 so

B − 1

4A2(α− 2β)
= 1

B =
1 + 4A2(α− 2β)

4A2(α− 2β)

and we wantx(T ) = 0 so (assumingα− 2β 6= 0)

BeαT − e2(α−β)T

4A2(α− 2β)
= 0

(1 + 4A2(α− 2β))eαT = e2(α−β)T

4A2(α− 2β) = e(α−2β)T − 1

A2 =
e(α−2β)T − 1

4(α− 2β)

from which we can deriveA, and thenceB is

B =
1 + 4A2(α− 2β)

4A2(α− 2β)

=
e(α−2β)T

e(α−2β)T − 1

The figure shows the derivedr andx curves.
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Note that the objective function can be calculated to give

J{r} =

∫ T

0

e−βtr1/2 dt

=

∫ T

0

e−βt e
(α−β)t

2A
dt

=

∫ T

0

1

2A
e(α−2β)t dt

=
e(α−2β)T − 1

2(α− 2β)A
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