Variational Methods and Optimal Control
Extra Questions

Matthew Roughan
<matthew.roughan@adelaide.edu~au

This contains some extra questions related to the CalctiMar@mtions and its use in Optimal Control. The questiores ar
generally harder than those in class exercises, but showexr wange of applications and ideas than we have time to aover
lectures or tutorials.

The questions here are not explicitly examinable, but if yaderstand these, you should be very well prepared for the
exam.

1. The Chain Rule: Givenu = z2 + 2y, where

z(r,t) = rsin(t).
y(r,t) = sin®(),
determine the values of
ou ou

9 and 2
o 29 5

Solution:
ou oudx  Oudy
o ~ owor  ayor
= 2zxsin(t) +2 x 0,
= 2rsin®(t),
ou oudxr  Oudy
o~ dzor ayon
= 2arcos(t) + 4sin(t) cos(t),
= 2(r* +2)sin(t) cos(t).
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2. Taylor Series: The “line-picking” problem is the problem of estimating tHistribution of the lengths of randomly
chosen lines within some region. For instance, start witinchac region of radius?, and choose two points (indepen-
dently and uniformly at random within the region). Then thelyabiliy density function for the length of this line takes

the form [1, 2]:
4t e 2t2 t2
)= —cos | — | - /1 - —
9(t) = g cos <2R> 7R3 AR

This is a rather complicated function. Use Taylor seriesyadt = 0) to find a simple, 3rd order approximation for
the density.

Solution: It would be quite hard work to calculate all of the derivative this function, and then insert them into a
series. A simpler approach is to the Taylor series of theaurbponents of the function:

1 1
cos H(z) = T~ %- 6173 +oee
1172 1174
V12 = 11— 2 4.
x 3 3 +
to derive
) = 4t [t 2t2 ) t2
= TR \9R) T TRS AR
at (1 t 2t> 4
R (5”%) e O
2t 4t?
moam T o(t") (1)
from which we can immediately see that
9(0) 0,
2
g(l)(o) = ﬁ7
8
9(2)(0) = _ﬂ_—Hga
g®0) = o

Notice that because the 3rd order term is zero, the apprdiximia quite good.
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3. Minimizing functions: A chain hanging between two pylons takes the shape commafidcacatenary which has

mathematical form
y = c1cosh (ac — 02) — A
C1

where the constants, ¢; > 0 andc, are determined by the length of the chain, and the end conditions, i.e., the
heights of the poleg(xy) = xo andy(z1) = ;.

Assume we have calculatéd c; andc, for a chain of length, and given pylon heights, derive the minimal height of
the chain. Be careful to consider all possible cases, andjteedhat it is a minimum, not just a stationary point.

clcosh(x_CQ)—)\
C1
y = sinh(JC_CQ)7

C1

which is a non-decreasing function, with a zeracat ¢,. Soy is decreasing to the left af = ¢,, and increasing to
the right. Hence there are three possible locations for th@mum — the two edges, or the stationary poigits= 0.

Solutions:

Y

xo, if ca <o,

Tmin = €2, Ifxg<eo <, 2
I, if C Z xXy.
In these cases we get
Yo, if C2 S Zo,
Ymin = § €1 — A, ifxg<eco <, (3)
Y1, if co > 1.

The pointsyy andy; can easily be seen to be minima (when appropriate) becatise imicreasing or decreasing nature
of y(x) over the intervalzg, 21) in each case, respectively. The painfi, = ¢; — A can be argued to be a minimum
(when appropriate) physically, or we can calculate the secreviative:

1 _
y" = —cosh (x 62),
C1 C1

which is positive for allz, meaning that the point = 0 must be a minimum.




Extra Questions Variational Methods and Optimal Control

4. Seashell morphology:3] Many seashells take the form of a logarithmic spiral, andatural question arises, why?
The most important consideration is that they must growamantally, and as such they need to be able to add to a
shell as they develop, without rebuilding the entire thiAgsimple cone would, however, provide this facility, so why
build a “cone wrapped around a logarithmic spiral?”

One answer has been postulated for planispiral Shilég they are maximizing a kind of structural strength aisgted
with flat springs (like watch springs). The proposed funttio minimize (withz — y written as a function o) is

P
Had =5 [ [ 447 = (i =) % do.

Write and solve the resulting Euler-Lagrange equations.
Solution: There will be two Euler-Lagrange equations, one iand the other iy, in the form

dof of 0
dp 0&  Ox
dof of 0
dp 9y 9y
resulting firstly in the equation
a4 [ye_%‘d’] —2xe 20 f g2 =
do
—20ye” 2 4 ge20% _ 9pe7290 Lo =
—ay+y—x = 0
Yy = oy-—=x.
Combined with the second equation we get
Yy = ay—=x
T = z+ay.
It is easy to check the equations have solutions
r = Ae*®cos¢

Ae*? sin ¢,

which is just the parametric form of a logarithmic spiral.

1“The Mathematics of Gnomonic Seashells”, Chris lllert, Mehatical Biosciences, 63:21-56, 1983
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5. Free-surface of a rotating fluid: Consider a fluid of density in a cylindrical drum of radiugz, which is rotating at
angular speed = ¢, and which has been doing so for long enough that the entickiflsimilarly rotating. Calculate
the shape of the free-surface (the interface between tlandifluid), ignoring friction and surface tension.

Solution: The surface’s shape will be rotationally invariant, duedtational symmetry, and so we shall represent it in
cylindrical co-ordinates as a function of radius fy).

Consider the potential energy of a particle at péing, 6). There are two forces applied to the particle
gravity = mg inthe direction -z
centripetal = mrw? in the direction +r

Thus, we can deduce the form of the potential of the particheet

Vgravity(r,s,G) = mgs

2 2
Vcentripetal(ﬁsﬁ) = —mr-w”.

(noting that potential is defined so that the force in di@tti; is —0V/0zx;). The kinetic energy of the particle is

T = —mriw?
2mrw

To calculate the minimal energy free surface, we take

R 2w z
F{z} Z/O /0 /0 [Vgravity + Veentripetal + 1’| 7 ds df dr,

where the extra factor af in the integral comes from the Jacobian of the transform ff@emtesian to cylindrical
co-ordinates (think of the affect of integrating around bndler of radiusr).

Now, first consider integrating with respect to the heighthef particles, we get
# 1
/ mgs + —mrlw?ds = m [922 + w2r2] ,
0 2 2
and note that there is no dependencé amthe integral, so that contributes a simple facto2ofso that
R
F{z} = mﬂ'/ [92°r + w?r®] dr,
0

We seek the shap#r) that minimizes this functional. Obviously the constantéaenm has no affect on the shape
of the solution so we ignore it here. The functional is notetegent on’ (and thus is trivially linear i’ and so the
Euler-Lagrange are degenerate reducing to

2921 + w?r® = 0.

Obviouslyr # 0 except at the center, so we can rearrange this equation to get

i.e., the shape of the surface is a paraboloid of revolution.
Notes:
o Note that this is only true for the case where the height offlilid at the center iz (0) = 0. If we seek to
determine the solution to this problem in general we canrobtite volume of fluid, and this constraint

R
V{z} = 27r/ zrdr.
0
when added to the above (as an isoperimetric constraintanlithgrange multiplier) will provide a vertical shift
in the solution.
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e There is a second (perhaps simpler) approach to solvingéndace problems. There can be no tangential forces
along a free fluid surface, otherwise, particles in the flualid travel along the surface, changing its shape. So
in equilibrium forces must balance.

The gravitational force (tangential to the surface) on apof the surface isng sin 6 (towards the center of the
drum), and the centripetal force igrw? cos § (towards the rim), whereéan § = dz/dr. Balancing the forces

gives

mg sin 6 mrw? cos @
r
tan 6 —w?
g
dz rw?
dr g
2
w
z —r? 4 c,
29

as before.

e This is not an academic problem. This solution is actualgdus create large parabolic mirrors for use in astron-
omy. The Large Zenith Telescope in Canada is the largesttsletcope with a pool of mercury of diameter of
6m, and about 8.5 revolutions per minutetp://en.wikipedia.org/wiki/Liquid_mirror . Such
telescopes cost about 1% of the cost of a similar sized cdiovext mirror, but not surprising can only be pointed

straight up.
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6. Generalization:

Consider the following problem — find the extremal curveshaf following functional:

1
Flob= [ o)y o
0
for twice differentiable functio(-) > 0, andy(0) = 0 andy(1) = 0.

(a) Show the functional is bounded below by zero.
(b) Solve the general problem using the Euler-Lagrangeteamsa
(c) Solve the specific problem for the following cases:
i. g(x) =1/z"fora > 0:
y = & et + k.

a+1
i. g(x) =
y =cln(z) + k.
ji. g(z) =% fora > 1:
-1

y = _C(Zafl ) +k

iv. g(z) = e*®:
c _
y=——e axr +k

Solution:

(@) Asg(x) > 0, and y’2, the terms inside the integal are never less than zero, satédgral has a lower bound at
zero.

(b) The Euler-Lagrange equations are

dof of d ,
dxoy 0y dx g(x)y’ = 0.
So
g(z)y" = const,
or

y:/rcx)dx—i-k.

(c) Examples:

i. g(x)=1/z%fora > 0: .

— a+1 k
Y —a+1:r + K.
i. g(x) =
y =cln(z) + k.
ji. g(z) =% fora > 1:
-1
y= 76(;111—1 ) +k
iv. g(x) = e*®:
c _
y=——¢ ax+k
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7. Brachystochrone for a rotating object: Brachystochrone fa a rotating object: The classic brachystochrone is
based on a sliding, frictionless bead. Now compute the sbbBpérachystochrone for an object rolling down the curve
(for the sake of argument assume it is a spherical marblegtinthe result should be extendable to any rotationally
symmetric object), which does not slip, but experiencegictidnal losses of energy.

Solution: As before we will exploit conservation of ernergy which isaeaip of kinetic and potential energy. We can
find the potential energy of an object by taking the mass tobatéd at its center of mass. For the sake of what follows
assume that the object is rotationally symmetric, and steitdéer of mass is also the center of rotation, so the potentia
energy term will be the same as for the standard Brachystoetproblem.

A rolling object has two sorts of kinetic energy:

e The translational kinetic energy associated with the mauarof the center of mass in the direction it is rolling,
which is just the standard
1
T = Zmu?.
2

e The kinetic energy associated with rotation, which is just

1
Ty = §Iw2,
wherew is the angular velocity (measured in radians per second)] amthe moment of inertia (about the axis
of rotation). Example moments of inertia are given belowdbjects of radiug and massn.

object | I

solid sphere

thin spherical shell
solid cylinder

thin cylindrical hoop

2

33
3,353

SN NG

3
ﬁl\.’)

For the marble in question, the kinetic energy is therefore

Ty = gmr2w2 .

When there is no slippage, the rate of angular rotatipand the velocity of the object are directly linked by
V=Trw.

Thus the total kinetic energy of a rolling object is

1 1 2 7
T=T+1T= §m [v2 +Iw2} = §mv2 [14— g] = Eva

Note that this is in exactly the same form as the kinetic enefa sliding bead, but the constant is different. Energy
conservation gives the velocity at a point to be

10 [ E
v = | — —
7 |m ~ Y|

Now remember the functional of interest for the brachystonh is

= [ = e [

7

10 | £
w=—|=—
7 |m )

So the form of the solution will still be a cycloid, as for thiassical cycloid, though the constants of integration may
differ.

where we make the substitution
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8. Clothoid or Euler Spiral: In previous consideration of a bent elastic beam or camtil@engthd), we assumed that
distortions from horizontal were small, and that we couleféfiore approximate the elastic energy as

d
K
V== "2 q
2/0 y ar,

wherex is the flexural rigidity. In the case where the beam is benbhéythe limits of approximation, what shape will
it take? In particular, what shape would it take if there isoitnpforce of P on the end, pushing at right angles to the
end of the beam (assume the left end point of the beam is atitjia,aand clamped horizontal, but tlie, y) position

of the right end-point is free).

[Hint: parameterize the shape of the beam by the arclerdfrom the origin) and the tangent anglgwith reference
to the horizontal) at each point. NB: this type of parametation for a particular curve is sometimes called the
Whewell equation of the curve.]

What happens if the force is directly downwards?

Solution: Take the left end point of the beam to be the origin. Pararnzetére shape of the beam Bys), the tangent
angle at arclength along the beam, i.e., the position of the bef@amy) as a function of can be written

x = /Oscos(O(t))dt
y = /Osin(G(t))dt.

If the force was downwards, the energy of the beam is poteRtjéd) plus the elastic energy, which depends on the
curvature of the beam at each point, giverdhyso the functional of interest is

1 d d
E{6(s)} = Py(d) + 5/ KO ds = / ge'Q + Psin(f) ds.
0 0

However, we take the simpler case here where the force isegpgl right angles to the end of the beam, so that the
potential energy i$d#, so that the functional of interest is

d
E{H(s)}/o ga’upods.

Note that this is a linear approximation to the previous fiomal for small deflectiong. The left end point of the beam
is at the origin, and clamped horizontal, so

0(0) = 0.
The Euler-Lagrange equation is
daof _oF _
ds 00" 00
d
—0' — PO =
Hds 0
k0" — P9 = 0. 4)
and hence, we get an equation of the form
0" = P/k,

which has solution
P 2
0 = —s“+ays+ ag,
K

with curvature
, P
0 =2—s+aq,
K
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i.e., the curvature varies linearly with distance along Itleam. Note that equations such as this which relate the
curvature to arclength are commonly called Cesaro equstidaking the initial conditiod(0) = 0 into account we
getaog = 0. The value of at the right boundary is free (butis fixed), and so at the right boundary

of
20 |,_,

so curvature at the right boundary is zero, i.e.,

=k0 =0.

P
a; = —2—d.
K

The resulting shape is shown in Figure 1 (a). This solutiocaited theClothoid, Spirosor Cornu Spiralor Euler
Spiral. Figure 1 (b) shows the Euler spiral.

@) (b)

1.5

0.5}
1

0

0.5

-0.5¢
0

_1 L

0 1 2 o 05 1 15

Figure 1: Clothoid of Euler spiral foP = x = 1. Figure (a) shows a solution to the cantilever problemdfes 2, while
figure (b) shows a more general picture of the Euler-Spirdéliaoften shown.

The Euler-Spiral has been used to model non-linear splireesl the ideal transition curves for railways (see next

question).
Note that if we went back to the Euler-Lagrange equationa fdownward force we would get
daof _of _
ds0¢' 00
k0" + Pcos(f) = 0. (5)

The DE given in (5) is harder to solve, but is reminiscent efriion-linear pendulum DE, which is
¢ + w?sing = 0.

In fact we can convert one to the other by a simple change dablassy = 6 + 7/2, andw = /P/k. The non-linear
pendulum has solutidrgiven by

#(s) = 2arcsin {sin %sn {K (sim2 %) — wt;sin® ?0} } .

whereK (m) is the complete elliptical integral of the first kineh (u; m) is the Jacobi elliptic function, angh = ¢(0)
is the initial value ofy (assuming the pendulum starts at r¢$0) = 0). These solutions form part of a more general
set of curves called thelastica

2“Modeling of Curves and Surfaces with MATLAB”, Springer Usigraduate Texts in Mathematics and Technology, 2010,mnveld, Part 2, 201-244,
http://www.springerlink.com/content/x7n001g2752p513 6/fulltext.pdf and “Variational Study of Nonlinear Spline Curves”, Lee
and Forsythe, SIAM Review, Vol.15, No.1, Jan, 1973, pp.138; http://www.jstor.org/stable/pdfplus/2029293.pdf?acc eptTC=
true .

3«Exact solution for the nonlinear pendulum”, A. Belende€l1 Pascual, D.I. Mendez, T. Belendez and C. Neipp, RevisiaiRira de Ensino de Fisica,
V. 29, n. 4, p. 645-648, (2007Mttp://www.sbfisica.org.br/rbef/pdf/070707.pdf

10
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9. Railway design: there are a number of interesting problems in optimal desfgailways, for instance in minimizing
the cost of a trip. However, here we imagine a railway thattrohange directions by an angld). Assume the length
of the curved track ig, what is the best shape for the curve?

More precisely, we might aim to minimize curvature in the taiminimize the centripetal force. Intuitively this would
result in the curved segment being a circular arc. Howekieryésults a sudden change in the force at the join between
straight and curved sections of trdckA better curve will have zero curvature at the end-poims, @ould minimize

the magnitude of the total change in curvature (or its sqwehnéh is easier for us to deal with here).

Solution: The centripetal force on a train at poinalong the track will b, (s) = v26’. As velocityv is a constant
here we shall WLOG set it to be Rather than simply minimize the force, recognize that mining the square of the
integrated forces will results in the circular arc, i.e., if

-d
J{6} :/ 0% — N0’ ds,
0

where the second term comes from a Lagrange multiplier giversoperimetric constraint thgﬁf 0" ds = A6, then
we get the Euler-Lagrange equations
0" =0,

which has solutions
0 = c15+ co,

i.e., acircular arc.

However, if we seek to minimize changes in acceleration wezlrie minimize changes in curvature, and so we get a
functional of the form

-d
J{0} = / 0" — N0’ ds,
0

with corresponding Euler-Poisson equations
9//// — 07

and solution
0 = 35 + 8% + ¢15 + ¢p.

So we see the result is now a clothoid-like curve, with theature varying quadratically along the length of the curve.
Now we choose a set of coordinates such that

6(0) = 0
0(d) = A0,

and note that we wish curvature to be zero at the boundages, i

0'0) = 0
0d) = o.

The boundary conditions atensure that; = ¢; = 0. The boundary conditions dtthen give

03d3+02d2 = Al
3e3d?® + 2c0d = 0.

The second condition gives = —3dcs /2. Substituting into the 1st equations
c3d® [1 —3/2] = A6,

SO

11
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1.2

0.8

0.6

0.4

0.2

clothoid
circular arc |1

-0.2 0 02 04 06

0.8 1 1.2

Figure 2: Clothoid transition curve compared to a circutar a

Figure 2 shows a comparison of the clothoid solution, anctiteallar arc.

Notice that the maximum curvature of the clothoid is lardent for the circle. Now, if we had a maximum value of
#’, then this introduces an inequality constraint, which thei satisfied by the solution above, or we need to have a
segment of the curve, wheté is constant at its maximum value, i.e., it sits on a circutarfar some portion of the
transition. In this case, corner conditions (and physiogliments) mean that the Euler-Poisson solution must j@n th

circular arc at a tangent.

Whewell and Cesaro equations provide useful parametaniiafor a range of problems, for example here are some
curves with simple parameterizations for tangent angleurvaturep’ = dy/ds and arclengtls. Note that the Cesaro
equation can be obtained by differentiating the Whewellatign.

Curve | Whewell Cesaro
Straight Line| ¢ = ¢ ' =0
Circle | s=rp ¢ =1/r, wherer =radius
Catenary| s = atan ¢ =7t
Log-Spiral | ¢ = clogs o =c/s
Cornu Spiral| ¢ =cs?/2+k | ¢ =cs

4For instance, if the track is banked to match the centrifetak the banked track and straight track must meet in a snmote, and so the transition

in the force must be smooth.

12
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10. Catenary and corner conditions:
The shape of a hanging chain of lendtlwas presented as the solution of the problem of minimizirtgmual energy

"1

Wiply} = mg/ yv1+y?dz,
)
under the isoperimetric constraint

G{y}:/ Vit yde = L.

assuming the (given) heights of the pylans= y(x;) > 0.
We determined that the solution to this problem took the form

y = c¢1cosh (:1702) — A,
Cc1

where the constants, ¢; andcs are determined by the lengthof the chain, and the end conditions, i.e., the heights
of the polegy(xy) = zp andy(x1) = 2.

Earlier we calculated the lengih,,., of a chain that just touched the ground between the two pylbiasy, assume
the chain is longer thah,,., (but less thamy — x¢ + yo + y1) and thaty(z) > 0.

Determine the shape of the chain.

Solutions: Nothing has changed about the functional of interest, sergan inequality constraint we know that there
are two possibilities:

e the Euler-Lagrange solutions are satisfied and the chafstidde shape of a catenary; or
e the constraint is tight, i.ey(z) = 0, and the chain rests on the ground.

A complete solution for the shape of the chain is made up ahseds of these types with “corners” joining them. We

know
1 _
y” = — cosh (:Z7 62) > 0,
C1 C1

for all z, soy(x) is convex, therefore there are only three possible shapes:

(a) the standard catenary, which has zero corners;
(b) a catenary that just touches the ground, which poténtials one corner; or
(c) a catenary with three segments:

o the left segment has a catenary shape, and is non-increasing
o the middle segmentis flat (with(z) = 0); and
¢ the right segment has catenary shape, and is non-decreasing

The last case, illustrated in FiguP@ is the one of interest here.
PICTURE

At the corners, which we label~ andz™, the chain must be continuous and satisfy the W-E corneritions. As the
value ofy is fixed at these corners, the W-E conditions require that#miltonian be continuous at the corners.

The functional being minimized (including the isoperinietonstraint) is

"1

F{y}:mg/ (y+ vV 1+y?dz,

zo

The problem is autonomous, so the corresponding Hamilbdioiathe catenary is constant, and given by

(y+)

N

H =

13
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and for the component whege= 0, we havey’ = 0, and scH = \. Given H must be continous at the cornefs,= A
over the entire curve, and as we already defined (in previolusiens) thatd = ¢; we getA = ¢; (where we know
thatc; > 0).

That is the same requirement we had for the curve that hadhéng,., but now we allow a greater length, and have
two additional unknowns, i.e., the locations of the corn&snow we have to solve, for a curve of shape

c1 (cosh (”“?f;) — 1) , forzg <o <2,

ylz) = 0 forz™ <z <at,

3

ot
c1 (cosh [ F=2) — 1 forzt <z <z
c1 ) ’

where we now have 5 unknowns, c,, c5, *~ andz*. In addition to the end-point conditions, and the length
constraint, and{ continuity at the corners, which is implicity enforced by tform of solution, we have to enforce
continuity ofy at the corners, i.elim,_,,- y(z) = 0 andlim,_, .+ y(z) = 0. Thecosh function has minimum value 1,
and so, this condition implies that = ¢~ andz™ = ¢™. Hence we are left with three conditions and three unknowns:

y(fﬂo) = Yo
y(r1) =

L = ($+—x_)—|—/ \/1+y’2dm—|—/ V1+y?dx
To xt
= (2" —27) 4+ epsinh((z™ — 20)/c1) + cysinh((z — 21)/c1)

The above can then be solved numerically.
Its is, perhaps, simpler to note that we can usé?(z) — sinh?(z) = 1, to get

cisinh((z — ¢2)/c1)) = Sign(x—02)\/cfcosh2((:r702)/cl))fc%

sign(z — c2)\/ (y1 + A)2 — 2.

Hence, for instance the left segment is
L{y"} = casinh((@™ —z0)/c1)
= (yo +¢1)? — ¢

= Vyolyo + 2c1),

and that at the left end-point

Yo = cycosh (u) -1
C1
yote (u)
C1 C1
(LO — T ) = cosh™! (LO + cl)

C1 C1

= = x9—c cosh™? <L+Cl> , (6)

C1

and equivalently for the right-hand segment ,and substguhese into the length constraint, we get a non-linear
equation inc; only

_ +c _ +c
L=ux+x —cpcosh™! (M) — ¢y cosh™! (%) + \/yo(yo +2c1) + \/yl(yl + 2¢1),

C1 1

which perhaps simplifies the numerical solution as we carutatiec; by a one-dimensional search, and then compute
2~ andz™ directly from (6).

Matlab code is provided below, as are some example results.

14
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Figure 3: Example catenaries.
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Matlab code: for performing estimating catenary parameters is inclunsdw.

function [x, y, cl, ¢2_m, ¢2_p, x_m, x_p, lambda, ...
Lest, Fest, Lest_check, Fest_check, ...
f_val, exitflag, output] = catenary_long(n, y_0, y_1, x O,
%

% file: catenary_solver_gen.m, (c) 2012 Matthew Roughan
% author: Matthew Roughan
% email: matthew.roughan@adelaide.edu.au

%
%

% CATENARY_SOLVER: solves the shape of a hanging chain, whic

x_1, L)

h we know will be

% y = clxcosh((x-c2)/cl) - lambda

% with fixed length

% L = cl.[ sinh(x_b./cl) - sinh(x_a./c1) ]

% when the chain is long enough to drag on the ground. In this ca se it will
% have three segments (from left to right)

% -- a downwards part (from x_0 to x-)

% -- a flat part, y=0, (from x- to x+)

% -- an upwards part (from x+ to x_1)

%

% INPUTS:

% n = number of points at which to calculate the curve
% y_0 = height of the left pylon
% y 1 = height of the right pylon
% x_0 = left pylon position
% x_1 = right pylon position
% L = length of chain
%
% OUTPUTS:
% X, vyl = n (x,y) points along the shape of the catenary
% cl,c2 = constants of integration
% lambda = Lagrange multiplier
% Lest = estimated length, to be used in debugging
% Fest = an estimate of the functional which gives the potenti al energy of the chain
% Lest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% Fest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% [f_val, exitflag, output] = output from the optimization u sed to find the solution
%
if (y_0 <= 0)
error(sprintf('y_0=%.3f must be > 0’, y_0));
end
if (y_1 <= 0)
error(sprintf(y_1=%.3f must be > 0, y_1));
end

if (x_1 <= x_0)
error(sprintf('’x_1=%.3f should be > x_0=%.3f, x_1, x_0))
end

[L_max, L_min, c1_max, c2_max, lambda_max] = catenary_max
if (L <= L_max)
error(sprintf(’You need L=%.3 > L_max=%.3 for it to make sen
end
Lm = (x_1-x 0) + y_ 1 + vy 0;
if (L >= Lm)
error(sprintf('The chain length L=%.3f is too long even for
end

% create a function which we will minimize to find the solutio

% gl is the left end-point constraint
% g2 is the right end-point constraint
% g3 is the length constraint

% a = [cl,c2_m,c2_p]

_length(y_0, y_1, x_0, x_1);

se to use this routine’, L, L_max));

this routine (max %.3f)", L, Lm));
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gl = @@) (y_0 - a(l) =*(cosh( (x_0 - a(2)/a(1) ) -1) )."2;

g2 = @@ (y_1-al) =(cosh( (x_1 - a@d)a(1)) -1) )."2;

g3 = @) (L - (a(3)-a(2)) - sart(y_0 *(y_0+2 xa(1))) - sqrt(y_1 *(y_1+2 *a(1))))."2;

% g3 = @(a) (L - (a(3)-a(?) - a1) *sinh((a(2)-x_0)/a(1)) - a(1) *sinh((x_1-a(3))/a(1)) ).”2;

g = @(a) 9i(a) + g2(a) + g3(a);

a_est = [cl_max, (x_0+x_1)/2 - 0.01, (x_0+x_1)/2 + 0.01];

options = optimset('fminsearch’);

options = optimset(options, 'MaxFunEvals’, 10000);

[a, fval, exitflag, output] = fminsearch(g, a_est, options );
cl = a(1);

lambda = c1,;

c2_m = a(2);

f_val = [g1(a), g2(a), g3(a)l;

% check the length is correct
Lest = (x_p-x_m) + sqrt(y_O *(y_0+2 xcl)) + sqrt(y_1 *(y_1+42 =cl))
Lest2 = x 1 + x 0 - ¢1 =*acosh((y_0+cl)/cl) - cl +acosh((y_1+cl)/cl) + sqrt(y_O *(y_0+2 xcl)) + sqrt(y_1 *(y_1+2 xcl))

%

% now calculate points on the curve
%

X = x_0:(x_1 - x_0)/n:x_1;

k1 = find(x <= x_m);

y(k1) = c1 =*cosh((x(k1)-c2_m)/cl) - c1;
k2 = find(x > xm & x < x_p);

y(k2) = 0;

k3 = find(x >= x_p);

y(k3) = c1 =*cosh((x(k3)-c2_p)/cl) - cl;

% second check of the length
Lest_check = sum(sqrt(diff(x).”2 + diff(y)."2));

Fest = 0;
Fest_check = 0;
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11. Discontinuous solutions:Find the continuous curvgthat gives the minimum value of a simple functional of thenfor

Jyt= [ *y?da,

—a

with y(—a) = 0 andy(a) = 1. Consider continuity of possible solutions carefully.
Solution: The Euler-Lagrange equation is

d
—2z%y' =0,
dx 4
so eitheny’ =0 or
!
Yy = Pa
which we can integrate easily to get
&
y=——+ca
xz

Taking the second type of solution and inserting the endtpone get

C
0 = = + c2
a
1 = 72 + C2,
a
which have solutions
a
C1 = 75
1
(6] = 5

However, note that this curve has a singularity. at 0, and is therefore inadmissible.

The functional clearly has an upper bound on its minimumeal0, if y' = 0. However, if the end pointg(—a) #
y(a), then this solution is not allowed because it cannot be nantis.

However, we can consider a smoothed versions of the curve

| 0 wherex <0,
Y=11 wherez > 0.

by interpolating between them with a smooth function witthistances of the origin. In doing so we can create a curve
for which the functional is arbitrarily close to zero. So acf, there is no minimal curve, only a series of curve closer
and closer to a minimum.

Part of the problem lies in the fact that although the functfo= z2y'2 is continuous, and has two continuous
derivatives, it has

fy/y/ = 0,
atz = 0. At such points we can have problems in Euler-Lagrangeisoisit

Razmadzé defined a family of admissible discontinuouse=ufy by a set of curves that have a sequentgof
admissible curves such that

nl;ngoCn(x) = D(z).
Tim J{C,} = J{D},

limiting the number of discontinuities, but allowing for tesuse curves of the above type to find solutions that satisfy
the Euler-Lagrange equations almost everywhere.
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12. Geodesics:

Given two points on a circular-paraboloid, find the shor
path between them). That is, find the cuge) such that

b €T
F{y}:/ ds:/ 1+y?+22de
a o

is minimized, subject to fixed end pointsy, yo, 20) and 0 ‘
(x1,y1, z1) and the curve lying on the surface 1
2(2,y) = —a(z® +y?) n -0.5
-1 5
-1 )
0.5 0 05 1 1 X
Solution: We will solve fora. = —1 for convenience. In this case we can write the surface innpeiéc form as
x(r,0) = rcosé,
y(r,0) = rsind,
z(r, = r

We will take the case where we write the geodesic angle
curve on the surface is

asctifumof radius (i.e.d(r)), and then the arclength of a

L{6}y = /\/P+

(%)

wheretheta’ = df/dr and
Ox
or

1+ 4r?

0z 0z

or 00

—rcosfsind
ox

0
2
(%)
sin? 6 + r?

7,2

r2.

That is, we need to find minimal curves of the functional

dy
or
cos? 0 + sin? 0 + 472

9y Jy
ar 00

%
06

2Q0" + RO dr,

)+ (5)

0z
or

0z 02
or 00
+ rsinf cos

)+ (5)

cos?

9z
a0

L{6} = / 1+ 4r2 4+ 12072 dr.

There is no dependence @iin the integral, therefore the Euler-Lagrange equatiomgkfy to

ﬂ B T29/ _ k
00 V1+4r2 17207
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for some constant. Rearranging the equations we get

0% = K2(1 + 472 + 20"

~—

r2(r? — k?)0? = E*(1 + 4r?)
0 k2(1 4+ 472?)
72(r2 — k2

k [1+4r2
b=6+ / N d
Now, this integral is not easy, but we can do it using Mapleafoy other symbolic manipulation package) to get

0 = p+

1
= { —In(2) +12k%*In(2) — 8k%*In (1—4k2+8r2+4\/— (1+472) (—r2+k2))

k> 2k% — 12 +47%K% — 2V —k2/— (1 +4r2) (—r2 + k2)
—4——=1In | — .
V—k2 r2
= [f+
1 3k s
—§1H(2)+71n(2)—k1n(1—4k + 872+ 4/ = (1 407) (-7 £ 42))

_isign(k) | (_2k2 2 4 402k — 2R~ (L 4r2) (= + k2)> } |

2 r2

Given start and end points,, 6y) and(r1, 61), we can use numerical techniques to find integration cotsteandk,
and thence draw the geodesic, e.g. see
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13. Classification of extrema: Consider minimizing arc length (as in a geodesic problem)

J{y} = /\/1+y’2dm.

e Show that Legendre’s necessary condition for a local mininmisatisfied.

e Consider the second variation, and show that a geodesicx(eenel for the above functional) will be a local
minimum.

Solutions: Legendre’s necessary condition requires thay > 0 along the extremal. Now

a /

_ 9y
fyy ayl /1+y,2
1 B yl2
ity (g7
(1 +y/2) 7y/2
(1+y/2)3/2
1
(1+y/2)3/2
> 0

which is Legendre’s necessary condition.
The second variation is

-
§*F(n,y) = / (02 fyy + 200 Fyyr + 10 Fyry ] d,

0

where
fyy =0
fyy/ =0
1
Tov = Gymar %

Now the first two terms in the second variation vanish, soithiacomes

1
§*F(n,y) = / 0 fyry d,

0

wheren? > 0 and we have already shown thygt,, > 0, so the second variation must be positive for all pertudvesti
about the extremal, and therefore any extremal of the ahmwaibnal must be a local minimum.
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14. Yet Another Cantilever Problem: Going back to the original cantilever problem, we often $eefunctional written
in the form

d
EI
F{y} = / 73/’2 + py dz,
0

whereF is the Young’s modulus (or the elastic modulus) of the mateaind! is thesecond moment of aretefined
about the line on which we are bending. For instance, giveheam lies in théz, y) plane, we are effectively bending
it around thez axis, so the second moment of area would be defined (at a céstaalong the beam) by

1) = [ an

whereA is the cross-sectional area of the beam,ah the(y, z) plane.

Examples:
cross section shapearea I
solid rectangular (height, width w) | hw wh? /12
solid circular (radius?) | 72 nrt /4
ring (inner radius+, outer radius») | m(r3 —r}) M

Given in this form, we can solve problems where the shapesobam varies over its length, i.eis a function ofx.

Solve the following problem: imagine we want to determingvHar the wing of a plane will deflect. Consider a jet
plane, with a delta-shaped wings, so that they form trismglih the base fixed horizontally to the side of the plane.
The length of the wing i€, and the width at the baselisGiven this form, take®(z) to be in the form

El(z) = B(d — x),

for some constanB. Similarly, assume the lift generated by the wing is projoadl to its width at distance, and so
the force on the wing (upwards) can be written in the form

p(x) = C(d - x),

for some constan®’. Determine the shape of the wing.
[

b(d-x)

]
D

|

(a) Convair Delta Dart (b) Wing dimensions

Figure 4: Delta-winged aircraft..
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Solution: The energy function is in the form

d d
EI B(d —
F{y} :/ 5 y”2+pydaz:/ ( 5 x)y”Q—l—C(d—w)ydx,
0 0

The Euler-Poisson equation is

2 of

& 2
dx? ay//

dy

B~ )y + C(d )

(i "
B—[(d~
B[(d—

0.

D)y — "] +C(d— )
— 2"+ C(d— )

n

)y

Dividing by B(d — x) and takingz = 3"’ we get

Solve the homogenous form of this DE using

M(z) = exp U

2 2 z
d—=x

ik

an integratingpfac

dz] =exp[2In(d — z)] = (d — z)2.

d—z
We get
% [Mz] = —%M(x) = —%(d —x)?
Integrating we get
Mz = 3%(51795)3 + ki,

or

z

However, note that a solution with a poledds no
ensures this), so th&t = 0.

Integratingz = y"” to gety we get
"

"

Y

Note the natural boundary conditiop’é(d) = 0,

¢ —2
= S—B(dfx)ﬁLkl(d—:r) .

tacceptible (in fact the natural boundary condigjfid) = z(d) = 0

= 3pd-2)
¢ 2
-2 4k

soky = 0, and we integrate again

V= —psld— o)
y = 18%((17 z) + k3
Now, the boundary conditiogl (0) allows us to fixks = —lcs—d;, and we integrate once more to get
o= e - L
y = fn%(dfx)‘lf%—d;zleM
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0.8

0 0.5 1 1.5 2

and the natural boundary conditig{0) = 0 allows us to sek, = G4 50 the final solution is

2B
c cdd Cd
=——(d—2)* - — ==
) = —mpld-2) - gprtop

The maximum distortion of the wing, at its tip, is

cd'  cd*  30d

d = — =
vd)=-25+ mp 728

The solution is interesting, particularly as we can see threature of the wing is

C
no_ _ 2
V=55 (d—x)=.
Note though, that the wing breadthds(d — =) so the total stress on the material is proportiondtte- z), i.e., it is
largest near the base of the wing.

4
— deflection — max deflection
{ - = =curvature - = =max curvature
3
2
’l
’é
1 ‘,«'

Figure 5: Results fo€ = B = 1 andd = 2.

24



Extra Questions Variational Methods and Optimal Control

15. Isoperimetric constraints: Consider the problem of finding the minimal length curve EEwtwo pointgxo, yo) and
(z1,¥1), subject to the constraint that

G{y}:/ yV1+y?de =1L,
To
for some constant. Find the shape of the extremals.

Solution: Including the isoperimetric constraint via a Lagrange ipliir .. we seek extremals of the functional
ZT1
H{y} =/ V14+y?+pyy/1+y?de.
Zo

Take\ = 1/p and we get
AH {y} :/ A+ y)V1+y?de.

which is exactly the same as the functional used in findingsttepe of a hanging wire of lengfh and so the result
will be a catenary.

Note: In general there is a reciprocal relationship between dpétion objective and isoperimetric constraint. We can
usually exchange their roles (provided# 0).
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16. Isoperimetric constraints: For the functional

J{y} = / ()’ da

1
/ yide =1L
0

(a) Show forL = 3 that the extremal takes the form

subject toy(0) = 1, andy(1) = 2, and

(b) ForL = 7/3 show there exists a linear extremal.
(c) For L = 5/2 show the problem admits a solution with Lagrange multipiee= 0, and fund the extremal
corresponding to this value.

Solution: The problem can be written using a Lagrange multiplier asaftimding the extremals of

F{y} :/0 (yy')* + \y? do.

This is an autonomous problem, so the Hamiltonian will bestamt, i.e.,

o
H= y’a—;, — =) — M = [y

12

— )\} y2 =c, (7)

for some constant. There are two classes of solutions to these equations:

(@) If ¢ # 0, theny # 0, and thereforgy > 0 over the interval.
If X\ # 0, then we can rearrange (7) to get

’2 C+>\y2
Y = T2
Y
y/ - 4+ \/CWL)\y2
Y
:I:$dy = dr

Ve + Ay?
i%x/c—i—)\yQ = z+k.

Rearranging to gej as a function of: we get

_ M(x+k)2—c
Y - )\ ’

where we can take the positive square root because we kneW.

The proposed solution:
y(x) = /4 —3(x — 1)

is in this form, and satisfies the end-point constraiity = 1, andy(1) = 2, and
1 1 1
/ dex:/ 4-3(x—1)°de = [dz — ($—1)3]0 =[4- 1](1) =3,
0 0
so this solution satisfies the isoperimetric constraint el w
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(b) If ¢ = 0, then the solution requires eithgr= 0, which does not satisfy the end-point conditionsyoe +v/),
or

y::t\/XIE+k,

for constant. In order to satisfy the end-point conditions, we would riegu

y(0) = 1 =k=1
y(1) = 2 =>VA+k=2,
SO
y=x+1,

and\ = 1. In this case, the integral

1 1 371
+1) 8-1 7
24 :/ 2dw— | & - _ L
/Oy x O(x—i-) x 3 ) 3 3

so this solution is only viable i, = 7/3.

We know for this case thaf' = 0 and so the integral{y} = 0, which is the smallest possible value, so this
solution is a global minimum.

(c) If ¢ # 0, and we consider the cage= 0, then then we can rearrange (7) to get

'~

vy = k
2
% = kx+m
y = =+Vaxr+b,

for constants = 2k andb = 2m. Solving for the end points we get

y(0) = 1 =b=1
y1) = 2 =Vatb=2,

SO

y=+v3r+1.

! ! 3 Ys
/ y2d$:/ Bz +1)dz = [—302—1—30] = _.
0 0 2 0o 2

so this solution is only viable it. = 5/2.
We know for this case thaty’ = k = a/2 = 3/2 and so the integral {y} = k/2 = 3/4.

In this case, the integral
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17. Multiple isoperimetric constraints:

Find the extremals of )
J{y} :/ y'? da,
0

Subject to
S
Ii{y} = / ydr =2,
0
1
L{y} = / xyde =1/2,
0

andy(0) = y(1) = 0.
Solution: We solve for two constraints using two Lagrange multipliees, find extremals of

1
Fly} = / Y+ My + dazy da,
0

subject to the end-point conditions. The Euler-Lagrangm#qns are therefore
2y” = )\1 + >\2$5

which has solutions

o )\1$2 + )\2$3

4 12

for constants; andce. The boundary conditiop(0) = 0 implies thatec; = 0, and the boundary conditiaf(1) = 0

implies

Yy +ClIIJ+CQ,

The 1st isoperimetric constraint is

1 1 2 3 3 4 271
)\11} )\21’ )\1$ )\gw 1T )\1 )\2 C1
/O?J x /0 1 + 12 +carar [ 1 + 13 + 5 L 12+48+2 )

and the 2nd isoperimetric constraint is

1 1 3 4 4 5 371
)\1$ )\2$ 2 )\1$ )\2$ 1T )\1 )\2 C1
dr = dr = =424 = =1/2
/oxyx /() TR TRl I TR TR N P TR I Sl

These give us three linear equationsdpri; and\s which have solutions; = 42, A\; = 408 and\; = —720, which
gives the extremal
y = 602> — 10222 + 42z.
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18. Application to statistics: One of the classic methods for estimation in statisticslied#he maximum entropy estima-
tor. The maximum entropy principle is an extension of Lapigprinciple of insufficient reason, which in essence says
we should not assume things that are not supported by evédé&oc instance, in probability, unless we have reason to
suspect otherwise, we would assume events are equally, likel., the probability of heads coming up on a coin toss
is 1/2.

Maximum entropy extends this by noting that if we maximize {ghannon) entropy of a probability distribution
constrained by the facts we know about the distribution, wkderive the estimate of that distribution which makes
the least assumptions about the distribution that arepjpsted by the data.

The Shannon entropy of a distribution with one continuoutabde is defined to be

Hip) = - / p(x) np(z) dz,

wherep(x) is the probability density function (PDF) of the distritorti andp(z) In p(z) is understood to be zero
whenevep(x) = 0. PDFs satisfy certain simple properties, most notably:

e Non-negativity: the PDRp(z) > 0. However, Jaynes [4], states that “Mathematically, the imar-entropy
distribution has the important property that no possipiktignored; it assigns positive weight to every situation
that is not absolutely excluded by the given informationd, by this argument we can assume for maximum
entropy thap(x) > 0 for all allowed values of.

e Normalization: the PDF integrates to one, i.e.,

/p(fc) de =1,

Moreover, we often assume we know something about thellision, for instance, its mean. That is,

/ zp(z) dv = p,

for some known constat.

Use the above to calculate the continuous, maximum entrggtsitdition for a hon-negative random variable with
known meary.

Solution: The problem is one of maximizing a functional with two isdpegtric constraints, for a function defined
on [0, 00). We incorporate these into the problem using two Lagrangéiptiers \; and \,. Also, a priori we only
know that the random variable is non-negative, so we dordtkthe support of(z). Assume that it is some interval
[S,T], then we seek to maximize:

F{p} = /0 —p(x) Inp(x) + Aip(x) + Xowp(x) du.

Note that, although by Jaynes, we should take this integred all allowed values of, i.e., the interval0, o], we
have not shown in class that such a problem would be a viatd#d-f&nd points problem, so we shall instead condider
the problem with a free right end point.

The Euler-Lagrange equation will be

d4of _of _
dr Op’ Op
—1l—Inp(x)+ A +Xz = 0
Inp(z) = M+Xz-—1
p(z) = exp ( — 14X+ )\21’)
= Aexp ()\2:17). (8)
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The natural boundary conditions will require

of
ap’

f =0,

= 0,

Of
p o

at the end-point = T'. Howeverd f /0p’ = 0 so the first condition is trivial, and the second conditiondraes

_f’T 0
p(T)Inp(T) — Mp(T) — XTp(T) 0
p(T)(Inp(T) — X\ — XT) = 0.

There are two ways to satisfy this equation:

e p(T)=0,o0r

o p(T) =exp ()xl + )\QT),
but we already know the form @f(z) in (8), using the Euler-Lagrange equations, and from thskthat the second
condition cannot be satisfied.

The only way that the first condition can hold given (8) is ifrevé¢o take the trivial solutiop(z) = 0 everywhere
(which violates the normalization condition), otN§ < 0, in the limit7" — oo. Thus we can justify taking limits from
0 tocc.

From the normaization constraint, aihg < 0, we get

—A _ 9
Ay
A = _)\25
and from the constraint on the mean
| avwrds =
0
*)\2/ ze*®dr = pul
0
—/ eMdr = o
0
—1 _
n !
Ay = 71/#5
so the final solution is the Exponential distribution:
1
p(a) = —e~*/,
0]

Properly, we have not eliminated a functipfx) with corners, or regions that are zero (relying on Jaynexijpie),
but it should be obvious from the form of the solution to thé& Equation, that these are not possible for a continous
functionp(z).

Remarks: Maximum entropy is a general principle, and can used to derikier cases, for instance:
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e If the random variable has a non-zero probability of takirdues in some intervdk, b] then the maximum
entropy distribution is the Uniform distribution on thaténval.

e If the random variable support ovéroo, c0) and has known mean and variance then the maximum entropy
distribution is the Gaussian distribution.

¢ In general, Boltzman showed that if the random variablbad a number of known quanties expressed as expec-
tations

a; = B[f:(X)] = / fi(@)p() da,

and if there is a possiblg(x), which satisfies these conditions with positive support ¢ive interval over which
X is defined, then the PDF has the following shape:

p(r) = Aexp <Z )\ifi(m)) ;

and this theorem should not seem too hard to prove at thig.poin
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19. Classification of extrema: Show that ify satisfies the Euler-Lagrange equations associated witintigral

J{y}=/ p*y”? + ¢*y? da,

0

wherep(z) andq(x) are known functions, thesi has the value
Iy} = [Pyl -

Solution: The Euler-Lagrange equation will be
which in this case gives
In other words

20 d o
7’y —ydx[py]-

Substitute this into the integral and integrating the sddenm by parts we get

x1
J{y} = / P’y + Py’ da
xT
;1 2 12 d 2/
= +y— d
/w0 P’y ydw[py} z
T = 1
1
— / p2y/2 do + [yp2y/}mo 7/ y/pr/ dx
xo xo
= [Pu];)

Note: following a similar argument for some arbitrary functignve get

o 2 1/ 2 . 2 7/ d 2/
/ pYy'n + ¢Cynde = / pyn+nd—[py]dw
o o -z

T

T
/ p’y'n dz + [np*y']) - / n'p*y da
x

0 Zo

= [Pyl

If we insist thaty(z¢) = n(z1) = 0, then the above integral is zero, and so

J{y +en} / P’y +en')’ + Py +en)de

J;;1 T T
— / p2y/2+q2y2 d$+€/ p2y/nl+q2yﬁd$+€2/ p277/2+q2772 dx
o o o
z1
= J{y}+€2/ p*? + ¢ da
Zo
> J{y}

and hence the extremals are automatically local minima.
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20. Dynamic Systems:Consider dlyball or centrifugal governoas shown in Figure 6. A governor is used as part of an
engine to control its speed. The governor spins around issada rate determined by the engine, but as it spins faster,
the balls are pushed outwards by centrifugal force, andréig®s them, activiting some control mechanism to slow
down the engine. Thus they control its speed.

Figure 6: Flyball governor.

Take two generalized coordinates: the firstepresenting the angle of the upper arms to the upright, lsmdeécond

g2 representing the angle of the plane of the arms to some &kréference plane. We shall assume that the arms are
light and do not significantly affect the dynamics of the syst and that the masses are point masses. We shall also
ignore the force needed to control the engine.

(a) Use these coordinates to write the Lagrangian for thiesys
(b) From this Lagrangian, derive a set of equations of motion
(c) Determine what simple symmetries apply, and from thisvéeconservation laws for the system.

Solution:

(&) The Lagrangianig = T — V for kinetic energyl’ and potential’. The potential energy comes from the height
of the balls, which will be
y=1L,

above their minimum height. There are two balls so the pkist
V =2mgy = 2mgL(1 — cosq).

The kinetic energy comes from two components, the rotatronrad the vertical axis (at rai@), and the up-
wards/downwards motion of the balls, which we representrasilar motion around the joint between the arms
and the top, i.e., it has ratg. Circular motion at ratey, and at radiug has kinetic energ%mr%ﬂ, so the two
components of motion here induce kinetic energy

T =T+ Ty =mL?[¢5sin® 1 + ¢5] -
The combined Lagrangian is therefore:

L=T-V =m[L?¢sin’ ¢ + L?¢; — 2gL(1 — cosq1)] .
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(b) Hamilton’s principle of stationary action requirestttize paths of motion be stationary (extremals) of the follow
ing integral

J{ql,(p} = /Ldﬁ

Ignoring the constant factor of, the Euler-Lagrange equations are

d 0L 0L d . 20 .

Ea_ql — a—ql = o [2L2q1] — L?§32sinq; cosqy + 2gLsing; =0
or Lg — ng sing; cosqy + gsing; =0

d oL 0L d

- - _ —_— — el 2L2 . 2 =0

dt a(p a(p dt [ g2 ql}

or L2q'2 sin? q1 = const

(c) The Lagrangian has an expligt term, but nog, or ¢ terms, and is thus symmetric under time translations, or
rotations about the vertical axis (but not the other axelg fEsulting conservation laws are

e Conservation of energy (our model does not include a drifange, or any dissapation due to friction — if it
did then energy might not be conserved).
e Conservation of angular momemtum (about the vertical axis)
Interestingly, a careful examination of the second Eulegiiange equation shows that angular momentum (about
the vertical axis) is conserved.
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21. Electrical Dynamics: There are often electrical analogues to mechanical systemsimplest of which is a harmonic
oscillator comprised of a capacitor and an inductor as stiovagure 7.

CL L

Figure 7: Harmonic oscillator circuit.

Conventionally, this circuit is analysed using Kirchoffisltage law (that the voltages at the capacity and inductestm
be equal), i.e.,
Ve =V,

and Kirchoff’s current law (the current through the two campnts must balance)
ic +ir =0.

Theconstitutive relationselate current to coltage in the two components by

dig,
Vi(t) = L—=
. dVe
t) = C—=
ic(t) pr
whereC' is the capacitance (measuredrarads andZ the inductance (measuredhtenrieg of the circuit. Rearranging
these gives a second order DE
. 1.
1+ <E> 1= 0, (9)

which has simple harmoically oscillating solutions.

However, we can also consider this system as a variatioséisy Given an appropriate action integral, Hamilton’s
principle of least action applies here. Treat charge adtwssapcitor as the dependent variapléhen current is the
rate of change of charge= ¢. The Kirchoff relations allow us to consider only one chécgerent.

The analogue of kinetic energy is the energy in the induetbich for a linear inductor is
L

Engﬂ
and the analogue of potential energy is the energy stordwinapacitor, which for a linear capacitor is
1
Ec = —¢.
C 20(]

Write an appropriate Lagrangian and show that the Eulerdrage equations result in equation (9).
Solution: Taking a Lagrangian of the form

L=T-V=EF; - Ec,

we get

L 1

L=2¢-—¢.

21 ¢!

The resulting Euler-Lagrange equation is
1
Li+—=q=0,
q+ C’q

and we can easily see that this results in (9).

Notes: The constituitive equations are similar to Newton’s equagiof motion ¢ = ma), such as we might use in a
physical system like the pendulum. Here we show that thesdtsewould arise naturally from Hamilton’s principle.
Much more complicated electronic circuits can be considlaréhe same way.
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22. Higher-order derivatives and natural boundary conditions: We have noted that there are two ways of dealing with
higher-order derivatives in a functional, for instance

J{y} = /f(x,y, y'.y")da.
We can tackle it head on using the Euler-Poisson equation
d> 0 d o 0
f_dor of_

da? oy  dxdy Oy
or we can use a non-holonomic constraint 3’ to introduce the new variablg via a Lagrange multiplier, i.e.,

Gly} = /f(x, v,y 2) + M) (z — ) de.

and derive the two Euler-Lagrange equations

0,

d [of of

dz [ay’ A] oy ~ °
dof -
Ea_A —_ 0.

We showed in lectures that these produced identical extreumaes. Now show that the two approaches generate
identical natural boundary conditions (whergare the fixedr values at the end points, apdandy’ may vary at the

end points).
Solutions: We have already derived the natural boundary conditionthcase with functions af”’ to be
of
ay// - 0
of _ d of 0
ay/ dr 8y” .

Alternatively, we can use the natural boundary conditiamstifie case with multiple dependent variables, i.e., for
dependent variableg,, and Lagrangiaii, we would get

Zpk6Qk — Hoét

oL -
= Owherep, = -— andH =Y dipr — L
Pt Od k=1

T

In the context of this problemy, = y andgz = z, 2 = tandL = f 4+ A(z —y’). The value of: is fixed at the boundary
sodx = 0 in the above, and we can vafy andéy independently so the components separate and we get thddogun

conditions oL oL
5_9’@:0 and @Iizo.
Considering the second condition we get
oLl _or| _ of
02, 0 . Oy e,
which is just the first of the natural boundary conditions\ahd he first condition gives
oL of
—| ===-X =0
9’ zi 9’ zi

9/ Making the substi-

but remember that the Euler-Lagrange equations requitetbag the curve we have = £ 2

tution we get

af d of
oy dx 90z o Oy dx Oy o
So either approach result in equivalent natural boundangitions (though it may be that one or the other appearsin a
form more immediately convenient for solution).

_af d of
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23. Zermelo’s navigation problem (1931):imagine we are required to pilot a boat (that travels at atemispeed relative
to the water) from one side of a river to another, and that pfeed of the current in the river depends on the distance
from the shore. What is the fastest path across the river? fifublem is a specific case of the general Zermelo
navigation problem.

More precisely, consider crossing a river of widthwhich we orient along the-axis as in Figure 8. The river flows
from left to right, with speed(y), that depends only on the distance from the shor&he boat will have constant
speed’ with respect to the water (not the shoreline). We have cbouer the direction in which the boat aims (though
its actual direction of movement will be a combination of tieat’s and water’s velocities). We aim to minimise the
transit time fromA — B. For simplicity, takeA to be at the origin.

Find the minimal time path for

e ariver with uniform velocityv(y) = v
¢ ariver where the velocity near the centre is faster, follapa parabolic law, i.eu(y) = Cy(d — y).

.B \

<

— \\\
— > Y
v /U
vy — L/ u(y) Iy
—_—
_> //
‘ X

L

Figure 8: Zermelo's river crossing problem.

Compare the time taken by the optimal path, as compareddotgiath (where one steers so as to follow a straight line
betweenAd and B) and the path where one simply steers towards the goal.

Solution: The velocity of the boat with respect to the water in thdirection, andy direction respectively will be:,
andu,, respectively. Given the boat will travel with spedvith respect to the water, we know tha} + u§ =U2.

The boat'’s velocities with respect to the shore are
Y = Uy.

The goal to minimize is the time from to B, so we need to minimize

d1 dq
T{x,y}:/ —dy = — dy,
o Y 0

Uy

i.e., the distance divided by the velocity at each point. sy, we also have the isoperimetric constraint that we must
end up at the dock &8, and so

t d . d
0 0o Y 0 Uy

where we know that,, = +,/U? —u2. we incorporate the constraint using a Lagrange multigeobtain the

functional of interest
d 1+)\(,/U2—u§+v(y))

Uy
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The Euler-Lagrange equations are

/rr2 _ .2
iﬁ_ﬁ__’_)\(UQ_uQ)—l/Q_’_l—i_)\( U Uy+v(y))_0
: - Y 2 -
dy Ou,  Ouy uy

Au? e
ﬁ‘i‘)\ UQ—U%/ = —1—)\v(y)

’LLy
u +U? — u?
ALY = 1 - (y)
U? —u?
B S 5 V()]
U2 — 2 U2\
U2 U2
U2—-42 = ———— notethismeang, = ——————
Yy /A + o(y) 1/A +v(y)

Ut
o= w] W3+ o)

where we take the positive root because we want to move atresser (in the positive direction). Now that we know
(ugz, u, We can compute the path by integrating, for instance (assyme start at the origin),
v v — i v ~U + (1/x U
(1) :/ U 0 :/ 3+ 0() +(1/ +v)v/ dy.
0 V(1/A+0v)2 -U?

Now the boundary constraint is thafd) = 0 and this can be used in the above formula to firfor a given function
v(y), and then we can plot the path across the river.

T A/ A+u(y)?

Constant current: For particular cases the above integral may be analytitabtable, for instance, takdy) = ¢, a
constant. Then from the aboug = const. As z(y) involves an integral over a term that we have set to zerogihsy

to see that the trajectory of the boat must be a straight knesa the river, i.e., the boat is oriented so that its diiifihw
the current is compensated exactly by the boats directi@ncaM calculate the actual speeds by looking at the integral
for 2(d) = 0 (or indeed any:(y) as the trajectory is a straight line), i.e.,

z(d)/oyuanvd _ d7U+(1/>\+v)v/Ud 7d7U+(1/)\+v)v/U7

w YTl Vapror-r T e

U+ (1/A+¢)c/U =0,

which requires that

which leads to
1 U2
-2 .
A c ’
and hence
Uy = —C.
i.e., the velocity in the: direction (relative to the water) directly counters therent.

The argument of the square root in the denominator must bévegsvhich leads to the condition for a solution that
(1/A+c)*-U* > 0

4
U—Q—U2 > 0

C
U(U?=¢c*) > 0
U > c
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The condition makes some sense, as the boats speed aloegiditlection cannot be compensated if the speed of the
current of the river is faster than the boats speédIf the condition is not satisfied, then no trajectory exibes takes
the boat across the river to a point directly opposite the.sta

Parabolic current: The current in a river is often swifter near the middle, andmight perhaps model this as a
parabolic current, i.e.,
v(y) = ay(d —y).
Note that
U? U?
Uy = =

1A +ely) 1A+ ay(d—y)
wherel/\ is a constant. Integrating we get

C [Yugtv , [P=U+ /A +ay(d—y))ay(d—y)/U
v = [P = | VT ayd g O

The above isn’t easily solved analytically, but can be gasilculated numerically as a function bf\, and hence set
to zero. Oncd /) is known, the velocities,, are easily calculated. An example is shown in Figure 9.

dy =0,

U=0.50, 0=1.00, d=1.00, 1/A=1.342200

1
—
0.8 v(y) .
—>
0.6 .
L
04— .
—>
0.2—» .
—
0
-0.5 0 0.5

Figure 9: Zermelo’s river crossing solution.

Notes: There are many variants of this problem:

¢ finding the shortest crossing time regardless of where thélbods;
¢ finding the shortest time to get to across a bay, or other vibatgy;
¢ finding shortest times in aeronautical problems (in 3D).
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24. Higher order derivatives via non-holonomic constraints: Take an autonomous problem with second order deriva-
tives, e.g., find the extremals of

J{y} = /F(Ly,y’,y”)dx-

We noted in lectures that this could be solved using a newabbet = y', and rewritingF'(x, y, ', y") = F(x,y, 2, 2’).
There is now more than one dependent variable, but no secdedderivatives, however, we must also introduce the
constraint that — ' = 0 and so we look for extremals of the functional

b
Gly, 2N} = / @2 2) + @) — o) de.

The Euler-Lagrange equations fpandz are

499 09 _
dv dy' Oy
d9g 99 0
dv 0z 0z

note thaty(z, y, z,2') = f(z,y, 2z, 2') + A(z)(z — ¢') so the E-L equations become

d of
GA@I- 5 = 0
d of of B

w9 @ =0

The first Euler-Lagrange equation can be rewritten
a o of
& dy
Differentiating the second E-L equation WR'Twe get

2 9f dof dx

@07 do: &
Note from above that’ = — f, and that: =  andz’ = y” we get (as before) the Euler-Poisson equation:
?of _dof 9 _

&2 oy dr Oy’ + oy

Now show that the same happens if we solve the slightly diffeproblem with functional
_ b
Gluz ) = [ fwuf )+ 2@ - ) o

Solution: The Euler-Lagrange equations are the same with respgcioereg(x, y, z, 2') = f(z,y,v’, 2" )+ A (z)(z—
y') so the E-L equations become

d [of of
dof B
was M) =0

Differentiating the second E-L equation WR'Twe get

> Of dx

@0 @
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The first Euler-Lagrange equation can be rewritten

X dof of

& dedy Oy
Substitutingd\/dz, y' = z andy” = 2’ we get the Euler-Poisson equation:

& of dof  of

d? oy"  dr 0y’ + dy

= 0,

as before.
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25. Beltrami Identity in higher order problems: Take an autonomous problem with second order derivativgs,fand
the extremals of

J{y} = /F(y, y',y")de,

and find the corresponding Beltrami identity.
Solution: The problem can be directly solved using the Euler-Poissoiaon, but here we use an alternative.

First convert the problem into one with only first order datives by introducing the variable = 3/, and enforcing
this constraint with a Lagrange multiplier, i.e., the perblbecomes: find the extremals of

Gly,z} = /F(y, vy, 2+ Mz — ) dx,

The problem is automomous, so the Hamiltonian will be cartstee.,

of of
H = @Z/Jr a—y/y’ — f = const,

wheref = F(y, z,2') + A(z — ¢'). We can expand as follows, replacing= v’ andz’ = 3"

gz’—i—ﬁ /

H =
F4 oy’ Y

—f

oy Yy oy’

Now we can find the Lagrange multipli@rusing the Euler-Lagrange equation fgii.e.,

daof _of _
dv 9z 0z
d OF
22 )\ =
dr 0z’ 0
d OF
A o= —
dr 0z’
So the identity becomes
oF oF
H = wy”vLa—yy’*)\y’*F(y,y’,y”)
8F " aF ! ! d aF ! "
= —y —y—F— - F
957" + o7 YV an oy (v, y")
= const

Remarks: In fact, what we are really doing is deriving higher ordersiens of the Hamiltonian (and generalized
momenta). A fairly general form of this is given in “Noettetheorem in generalized mechanics”, Dan Anderson, 1973
J. Phys. A: Math. Nucl. Gen. 6 298ttp://iopscience.iop.org/0301-0015/6/3/005 . Converting to

our notation, if we take a functional

x1
J{y} = / L(x7y)y/)' "7y(n))dx7

0

then the corresponding Hamiltonian is

H=Y Py -1,
j=1
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where theP; are generalized momenta terms corresponding to gdchand are given by

n—j

. d 0L
(=1) dai Oy(i+d)’

A simple example is the case when= 2. In this case,

b L _doL
v dy'  dx oy"
oL

Po= oy’

Note that, as we should expect, these are the terms thatrappgba natural boundary conditions for a problem with
a second order derivative?; corresponds to freg, and P to freey’. The Hamiltonian (which in natural boundary
conditions corresponds to freeat the end point) is then just

— L.

L L L
H:P1yl+P2y/I_L:y/(a da ) I/a

oy ~awoy) "V oy
which we can see is the same as that derived above.

If we extend this to more than one dependent variable, theme thill be a series of generalized momenta for each state
variable, e.g., for a functional

1
J{q} = / L(z’ q7 q7 )y q(n)) dx?
zo

the generalized momenta terms are given by

h) _ i d 0L
B = 2 G g

and

n

H=Y"3"Pq - L
k

Jj=1

The important fact is that these definitionsi@fand H can then be used in variations of Noether’s theorem, corner
conditions, and in natural boundary conditions correspantb free end points, though obviously some care needs be
taken about the general form of these conditions. For imstadoether’s theorem see “Noether’s theorem in genethlize
mechanics” for the correct version of Noether’s theorem.
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26. Optimal Control: We consider the problem of steering a large ship. We wantangé the bearing of the ship from
0o to 61 in the shortest time possible. The equation describing &agibg of the ship is

0+0=F

where[ is the rudder setting, which is subject to the restrictibh < 1. Essentially, this equation reflects the fact that
the faster the ship is turning,the less affect the rudder has on the rate of change ofituve can see that when the
rate of turn reaches = 1, then the rudder will no long increase the rate of turn asalthis is effectively the maximum
rate of turn.

For simplicity we takefy = 0, and assume that the ship should be travelling in a straigbtdefore and after the
manoeuvre, so tha@ = 0 at the start and end times.

The optimization problem is find" that minimizes time

t1 61 01
T:/ 1dt:/ ﬁde—/ L ao.
to 9, db 0, 0

Solution: We can immediately see that the porblem is likely to be baaggliype control, but more formally we can
introduce the constraint into the optimization objectimough a Lagrange multiplier, i.e., minimize

011 .
J{F} :/90 5+)\(9+9—F) do.
The Euler-Poisson equations will be

& of dof  of

—_— = 0
dz? 9 dz 56 Bl
d?\ d\ d 1
— ——4+——= =0
dz? dx  dzx g2
D 3L
d:E 92 = cons
and
£ of _dof oF _
dz?2 9F dx 9F OF
A =0
Substituting the second into the first we get
1
— = const
92
or .
0 = const.

The only such solution that satisfies the boundary conditisé = 0, but this is unstatisfactory because then the ship
never completes the manoeuvre. On the other hand, the timaisized by takingd = oo, which requires infinite
turning force, and so is equally unsatisfactory.

Thus, as there is no Euler-Lagrange solution, we concluatelie solution must lie on the boundary of the admissable
constrols, i.e.f' = +1.

Given I', we can solve the state equations. We get
0+60=+1,

which has solution
0 =cy+coe b £t
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Take start poinfy = 0 and we gets = —c¢; SO

O=ci(l—e ")+t

and .
0=cret+1,
which also must be zero at the start point, so
1 = :Flv
and
0 = F(1—e b+t
) Fel+1

If we taked; > 0 for the sake of argument, then it is reasonable to assuméaihtdie optimal pattd > 0, and so we
must start with?' = 1 and
= —(1—e b+t
—e Tt 41

Assuming a second part of the curve with= —1 we get the curve
0 =cy+coet—t,

whered(t;) = 0y, butt; is unknown. The starting point is the cross-over paint ¢*, whered(t*) andd(t*) are
known, so we can write
0 =cy +coe” ) (t —1t%),

where

C2 -1 —H(ﬁ*)
c1 = H(t*) — C9

or
0=0(t") — (1+0(t")) [e*@*t*) - 1} ().

Given this form, we can again calculate the derivative
0= (1+0(t))e ) —1

and if we set this to zero at the right hand boundary and tadewe get

0 = (1+0(t7)e M=) 1
1 = (1+0(t))e t=t)
Inl = In(1+60(t")) +Ine t=t)
0 = In(1+46(t") — (t, —t*)
(b1 —t*) = In(1+0(t))

where we know thal(t*) =1 — ¢~ so
tp=t"+In(2—e "),
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So we have calculated all constants in termg.ofand now just need to know the time of the switch point. We can
substitutel + A(t*) = e~ into

0(t1)

o(t") — (1 + 6(t)) [e—“l—t*) - 1] ot — 1Y)
— ) — et [e*“l*t*) - 1} ~(t— %)
= 0t — [1 —etl—t*} ot — %)
and(t; — t*) = In(1 + 6(¢*)) so
ot) = 0@t — [1 —etl—t*} ot —tY)
= O(t") + 6(t") — In(1 4 6(t*))
Now up tot* we already know that

0 = —(1—e b+t
J —e P41

SO
0(t) = 6(t*) — [1 —etl—t*} ot —tY)
= —(l—e )+t +—" +1-In@2—-¢")
= t"'—In(2- e_t*)

which we can solve numerically to g&t. The solution is illustrated in Figure 10. The curve corss@dttwo phases,
the first of positive steering up until timé& = 5.691, and the second, of negative steering until tirhe= 6.383. Note
that a large part of the trajectory is almost straight as trerol limits the maximum rate of turn # < 1, and so for
much of the time, the ship is turning at near its maximum rate.
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Figure 10: Ship manoeuvre curve #y = 0 andf;, = 5.
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27. Existence: The question of whether a minimal solution exists is somesitrihgly non-trivial to answer. This is perhaps
best seen in the disarmingly simple sounditakeya needle s@troblem.

The problem is to find the smallest set within which a unit Begment (a needle) can be rotated continuously through
180 degrees so that it returns to its original position wittorientation reversed.

Solution: The problem sounds like a classical CoV problem similar td3 problem. However, int 1927 Besicovitch
showed that there was no minimum. Regions can be construdtiedrbitrarily small area, but there is no area zero
(technically measure zero) region that's is satisfactoywe can't find a minimum.

If we restrict the region to be simply connected ()
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28. Geodesics and cornerstn considering geodesics in the plane, we showed that thegssarily consist of straight-line
segments. However, we did not show that this was sufficientjmfact didn’t rule out a curve made up of a series of
straight lines with corners.

Use W-E corner conditions to show that the geodesics in theepust be made up of single line segments without
corners.

Solution:

The solution is interesting, because it illustrates sontb@flifficulties in classifying extrema. Point conditiome aot
sufficient because, for instance, if we had a geodesic lom B, and fromB — C, then a point condition along the
curve cannot rule out the curvé — B — C being a geodesic betweehandC.

In the special case above, we are saved by the corner cargljtieventing us from linking up two different lines, but in
general we need a condition that somehow considers the @utive in order to see whether we have a true minimum
(or maximum).
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