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Did you bring your duck?

Suddenly, Professor
Liebowitz realizes he
has come to the seminar
without his duck.

Larson, 1989
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Introduction
What is the point of this course?
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Motivation

Imagine a field containing patches
of gold.

Collect the most gold

We want to choose bestpath

But the path length is limited.
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Gold example (part ii)

The gold collected on the path is theintegral of the gold at each
point.

The length of the path isfixed.

We are maximizing an integral over a path forall possible paths.

Maximizing a function of a function (afunctional).
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The catenary

Consider a thin, uniformly-heavy, flexible cable suspendedfrom the top of
two poles of heighty0 andy1 spaced a distanced apart. What is the shape
of the cable between the two poles?
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What is the difference if the cable is coiled at the base of thepoles and is
free to move up and down via a pulley?
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Brachystochrone problem

“Did Bernoulli sleep before he found the curves of quickest descent? ”,
Peter Parker, Spiderman II

Find the shape of a wire along which a bead, initially at rest,slides from
one end to the other as quickly as possible under the influenceof gravity.

endpoints are fixed

motion is frictionless

Can think of as the “optimal slippery dip”
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Brachystochrone problem
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Brachystochrone solution
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Brachystochrone history

problem posed by Johann Bernoulli (1696)

Newton, Liebnitz, Huygens, Bernoulli’s

Euler developed method to solve it that was generalizable

Jacob first to solve?

Johann, “Ah, I recognize the paws of a lion”

Christiaan Huygens discovered cycloid property

A bead sliding down a cycloid generated by a circle of
radiusρ under gravityg reaches the bottom afterπ

√

ρ/g
regardless of where the bead starts. Hencecycloid =
isochrone
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Cycloid generation
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Geodesics

Geodesic= shortest path

shortest path between two points on a plane

shortest path between two points on a sphere

shortest path on an arbitrary manifold onIRn
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Dido’s problem

Isoperimetric problem: what shaped curve encompasses the largest area
given a fixed perimeter.

200 B.C. proof by Zendorus (but flawed)

Steiner proved that “if it exists” its a circle

Weierstraβ proved usingCalculus of Variations
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Control problems

Control of systems is critical in modern life

Mech.Eng: Design of active suspension

Medicine: Drug delivery to minimize harmful side-effects

Aerospace: optimize rocket thrust (to minimize fuel consumption)

Economics: maximize utility of consumption (vs savings)

Environment: optimal harvesting (say of fish)

Minimizing cost of A/C

Optimal control is the best (cheapest, fastest, smoothest,...) we can do.
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Other examples

Design of vehicle profile that minimizes drag

Finding shapes of soap bubbles
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Revision
Extrema of functions of one variable.

“Nothing takes place in the world whose meaning is not that ofsome
maximum or minimum.”

L.Euler
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Revision

Calculus of variations is concerned with maximization (minimization)

We are going to maximize (minimize) functionals, not functions

Let us first revise maximization (minimization) of function
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Maxima and minima

Functions of one variable:

Let x ∈ [a,b] and f (x) : [a,b]→ IR

If there is a pointxmin such thatf (xmin)≤ f (x) for all x ∈ [a,b], then
xmin is called aglobal minima of f (x) in [a,b].

The set of pointsx such thatf (x) = f (xmin) is called theminimal
set.

If there is an interior pointx ∈ (a,b) such that there exists aδ > 0
with f (x)≤ f (x̂) for all x̂ ∈ (x−δ,x+δ), thenx is called alocal
minimum of f (·).

similar definitions apply for maxima, note maxima off (x) are the
minima of− f (x)
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Maxima and minima: example 1

a

f(x)

xb

global maximum

global minimum

local minimum

local maxima
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Maxima and minima: example 2

f (x) = 1+ x2 on [−1,1]

global minimum atx = 0

local minimum atx = 0

maximal set{−1,1}
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Maxima and minima: example 3

f (x) = x on [−1,1]

global minimum atx =−1

not a local min. because not
an interior point

global maximum atx = 1
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Maxima and minima: example 4

f (x) = 1+ x2− x4 on [−1,1]

global minimum atx =−1
andx = 1

local minimum atx = 0.
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Maxima and minima: example 5

f (x) = |x| on [−1,1]

global minimum atx = 0

local minimum atx = 0
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How to find maxima and minima

Theorem 1: Let f (x) : [a,b]→ IR be differentiable in(a,b). If f (·) has a
local extrema atx then

d f
dx

= f ′(x) = 0

Proof: The derivative is given by

f ′(x) = lim
x̂→x

f (x̂)− f (x)
x̂− x

Supposex is a local minima, then∃δ > 0 such that
x̂ ∈ (x−δ,x+δ)⇒ f (x̂)> f (x), hence the numerator> 0. The
denominator changes sign at ˆx = x. Differentiability implies the left and
right hand limits exist and are equal, and hencef ′(x) = 0.
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Sufficient conditions

Theorem 2: Let f (x) : [a,b]→ IR be twice differentiable in(a,b).
Sufficient conditions for a local minimum atx are

f ′(x) = 0 and f ′′(x)> 0

Proof: see following.
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Some useful theorems

Mean Value Theorem:Let x0 < x1, and f (·) be a continuous
function in[x0,x1], and differentiable in(x0,x1), then∃ξ ∈ (x0,x1)
such that

f (x1) = f (x0)+(x1− x0) f ′(ξ)

Taylor’s theorem: Let f (·) be a function whose firstn derivatives
exist and are continuous in the interval[x0,x1], and f (n+1)(x) exists
for all x ∈ (x0,x1), then∃ξ ∈ (x0,x1)

f (x1) = f (x0)+(x1− x0) f ′(x0)+
(x1− x0)

2

2
f ′′(x0)+ · · ·

+
(x1− x0)

n

n!
f (n)(x0)+

(x1− x0)
n+1

(n+1)!
f (n+1)(ξ)
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Sufficient conditions

Theorem 3: Let f (x) : [a,b]→ IR have derivatives of all orders, then a
necessary and sufficient condition for a local minima is thatfor somen

f ′(x) = f ′′(x) = · · ·= f (2n−1)(x) = 0 and f (2n)(x)> 0

Proof: Taylor’s theorem, where ˆx− x = ε

f (x̂) = f (x)+ ε f ′(x)+ · · ·+
ε2n−1

(2n−1)!
f (2n−1)(x)+

ε2n

(2n)!
f (2n)(x)+O(ε2n+1)

Then

f (x̂)− f (x) =
ε2n

(2n)!
f (2n)(x)+O(ε2n+1)

> 0 for small enoughε
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Classifying extrema

Assume thatf ′(x) = 0

local maximaf ′′(x)< 0

local minima f ′′(x)> 0

turning point f ′′(x) = 0, and f (3)(x) 6= 0

+ a lot of higher order conditions

Call all points with f ′(x) = 0 the set ofstationary points
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Conclusion

We have looked at 1D local maxima and minima
We need to generalize this

next lecture, to functions ofN variables

then, to functions of functions (∞ variables)
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Extra bits
Some notation and definitions
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Notation

[a,b] is the closed interval, i.e. the set{x ∈ IR|a ≤ x ≤ b}

(a,b) is the open interval, i.e. the set{x ∈ IR|a < x < b}

(a,b] is the set{x ∈ IR|a < x ≤ b}

f (x) : [a,b]→ IR denotes a function that maps the set[a,b] to a real
number.
dn f
dxn = f (n)(x) denotes thenth derivative off (x).
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Synonyms

the global minimum is sometimes called a strong minimum

a local minimum is sometimes called a weak minimum

the local extrema are the collection of local minima and maxima
We sometimes abuse notation to include stationary points inthe set
of extrema.
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Useful Definitions: continuity

a function f (x) is continuousat x0 iff the left and right limits atx0

exist and are equal, i.e.,

lim
x→x−0

f (x) = lim
x→x+0

f (x)

otherwise it is said to have adiscontinuity.

We say a function is continuous on an interval if it is continuous at
every point inside the interval and the limits exist at the boundaries.

A function ispiecewise continuouson an interval if it has at most
finite number of discontinuities.
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Useful Definitions: differentiability

A function isdifferentiable at x0 if its derivative exists, and is
continuous atx0, i.e., the following limit exists and is the same from
both directions

lim
x→x0

f (x)− f (x0)

x− x0

We say a function is differentiable on an interval if it is
differentiable at every point inside the interval and the limits exist at
the boundaries.

A function ispiecewise differentiableif the derivative has at most a
finite number of discontinuities.

A function istwice differentiable if its second derivative exists and
is continuous.
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Useful Definitions

We also eliminate from consideration functions whose derivative
changes sign an infinite number of times in a finite interval.

e.g. sin(1/x)
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Notation

We define thedel or grad operator by

∇ =

(

∂
∂x

,
∂
∂y

,
∂
∂z

)

So, given a scalar functionφ(x,y,z), then∇φ is a vector function

∇φ =

(

∂φ
∂x

,
∂φ
∂y

,
∂φ
∂z

)

Given a vector functionf(x,y,z) = ( f1, f2, f3) then we define thediv
operator divf = ∇ · f, e.g.

∇ · f =
(

∂
∂x

,
∂
∂y

,
∂
∂z

)

· ( f1, f2, f3) =
∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z
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Notation

We can also use del to define thecurl operator using a cross-product
curl= del×, e.g.

curl f = ∇× f

TheLaplacian operator, or del-squared operator of a scalar function (of
(x,y,z)) is defined by

∇2φ = ∇ · (∇φ) =
∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2
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