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Fixed-end point problems
We’ll start with the simplest functional maximization problem, and show
how to solve by finding thefirst variationand deriving theEuler-Lagrange
equations:

d
dx

(

∂ f
∂y′

)

− ∂ f
∂y

= 0
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The Catenary

The potential energy of the cable
is

Wp{y}=
∫ L

0
mgy(s)ds

WhereL is the length of the ca-
ble

x0 x1

y=y(x)

y

d

g

0

1

y

y

Catenary problem where we have pullies on top of each pylon, and a large
amount of cable. Under appropriate conditions it will reachan
equilibrium shape. The critical features of this problem are that the
end-points arefixed but the lengthL of the cable is unconstrained.
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Fixed end-point variational problem

x

y

1(x ,y )1
y = y(x)

0(x ,y )0
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Formulation

Define the functionalF : C2[x0,x1]→ IR

F{y}=
∫ x1

x0

f (x,y,y′)dx,

where f is assumed to be function with (at least) continuous second-order
partial derivatives, WRTx, y, andy′.

Problem: determiney∈C2[x0,x1] such thaty(x0) = y0 andy(x1) = y1, such
thatF has a local extrema.
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The Catenary

Wp{y}=
∫ L

0
mgy(s)ds

But I don’t know how to evaluate this integral directly. Letsdo a simple
change of variables. The length of a line segment from(x,y) to
(x+δx,y+δy) is

δs ≃
√

δx2+δy2

=

√

1+

(

δy
δx

)2

δx

ds =
√

1+ y′2dx

δ s δy

δ x

x

y
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The Catenary

Wp{y}=
∫ L

0
mgy(s)ds

Change of variablesds =
√

1+ y′2dx. So the functional of interest (the
potential energy) is

Wp{y} = mg
∫ x1

x0

y
√

1+ y′2 dx,

= mg
∫ x1

x0

f (x,y,y′)dx,

where

f (x,y,y′) = y
√

1+ y′2
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How do we tackle these problems

look at smallperturbationsabout the max/min.
y

x

max

y=y(x)

 + ε 

x

x
For a local maxi-
mum

f (x+ ε)≤ f (x)

⇒ Conditions for extremals, i.e.,f ′(x) = 0
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Perturbations of functions

x

y

1(x ,y )1
y = y(x)

y = y + 

0(x ,y )0

ε η

Variational Methods & Optimal Control: lecture 04 – p.9/40

Perturbations of functions

x

y

1(x ,y )1
y = y(x)

0(x ,y )0

y = y + ε η2
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Perturbations of functions

x

y

1(x ,y )1
y = y(x)

y = y + 

0(x ,y )0

ε η2
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The Functional of interest.

Define the functionalF : C2[x0,x1]→ IR

F{y}=
∫ x1

x0

f (x,y,y′)dx,

where f is assumed to be function with continuous second-order partial
derivatives, WRTx, y, andy′.
Problem: determiney ∈C2[x0,x1] such thaty(x0) = y0 andy(x1) = y1,
such thatF has a local extrema.
The space of possible curves is

S =
{

y ∈C2[x0,x1]
∣

∣ y(x0) = y0,y(x1) = y1
}

⇒ The vector space of allowable perturbations is

H =
{

η ∈C2[x0,x1]
∣

∣ η(x0) = 0,η(x1) = 0
}
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Perturbation functions

The vector space of allowable perturbations is

H =
{

η ∈C2[x0,x1]
∣

∣ η(x0) = 0,η(x1) = 0
}

0x 1x
x

η

y
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What to do

Regardf as a function of 3 independent variables:x, y, y′

Takeŷ(x) = y(x)+ εη(x), wherey ∈ S andη ∈H .
Taylor’s theorem (notex is kept constant below)

f (x, ŷ, ŷ′) = f (x,y,y′)+ ε
[

η
∂ f
∂y

+η′ ∂ f
∂y′

]

+O(ε2)

So

F{ŷ}−F{y} =
∫ x1

x0

f (x, ŷ, ŷ′)dx−
∫ x1

x0

f (x,y,y′)dx

= ε
∫ x1

x0

[

η
∂ f
∂y

+η′ ∂ f
∂y′

]

dx+O(ε2)
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The first variation

For smallε the quantity

δF(η,y) = lim
ε→0

F{y+ εη}−F{y}
ε

=

∫ x1

x0

[

η
∂ f
∂y

+η′ ∂ f
∂y′

]

dx

is calledthe First Variation.

For F{y} to be a minimum, for smallε, F{ŷ} ≥ F{y}, so the sign of
δF(η,y) is determined byε.

As before, we can vary the sign ofε, so forF{y} to be a local minima it
must be the case that

δF(η,y) = 0, ∀η ∈H
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Analogy to functions

This condition on the first variation is analogous to all partial derivatives
being zero!

For a function ofN variables to have a local extrema

∂ f
∂xi

= 0, ∀i = 1, . . . ,n

For a functional to be an extrema

δF(η,y) =
d
dε

F(y+ εη)
∣

∣

∣

∣

ε=0

= 0, ∀η ∈H

Note now that we have to minimize over an infinite dimensionalspaceH ,
instead ofIRn.
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Simplification

Integrate the second term by parts

δF(η,y) =

∫ x1

x0

[

η
∂ f
∂y

+η′ ∂ f
∂y′

]

dx

=

[

η
∂ f
∂y′

]x1

x0

+

∫ x1

x0

η
[

∂ f
∂y

− d
dx

(

∂ f
∂y′

)]

dx

But note that by the problem definitionη ∈H , and soη(x0) = η(x1) = 0,
and so the first term is zero.
The function inside the integral exists, and is continuous by our
assumption thatf has two continuous derivatives, so for

E(x) =
[

∂ f
∂y − d

dx

(

∂ f
∂y′

)]

δF(η,y) =
∫ x1

x0

η(x)E(x)dx = 〈η,E〉2 = 0
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Euler-Lagrange equation

Theorem 2.2.1: Let F : C2[x0,x1]→ IR be a functional of the form

F{y}=
∫ x1

x0

f (x,y,y′)dx,

where f has continuous partial derivatives of second order with respect to
x, y, andy′, andx0 < x1. Let

S =
{

y ∈C2[x0,x1]
∣

∣ y(x0) = y0 andy(x1) = y1
}

,

wherey0 andy1 are real numbers. Ify ∈ S is an extremal forF , then for all
x ∈ [x0,x1]

d
dx

(

∂ f
∂y′

)

− ∂ f
∂y

= 0 ⇐ the Euler-Lagrange equation
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A useful lemma

Lemma 2.2.1: Let α,β ∈ IR, such thatα < β. Then there is a function
ν ∈C2(IR), such thatν(x)> 0 for all x ∈ (α,β) andν(x) = 0 otherwise.
Proof: by example

ν(x) =

{

(x−α)3(β− x)3, if x ∈ (α,β)
0, otherwise.

α β
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A second useful lemma

Lemma 2.2.2: Suppose〈η,g〉= 0 for all η ∈H . If g : [x0,x1]→ IR is a
continuous function theng(x) = 0 for all x ∈ [x0,x1].
Proof: Supposeg(x)> 0 for x ∈ [α,β]. Chooseν as in Lemma 2.2.1.

〈ν(x),g(x)〉2 =
∫ x2

x1

ν(x)g(x)dx =
∫ β

α
ν(x)g(x)dx > 0

Hence a contradiction.
Similar proof forg(x)< 0.
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Proof of Euler-Lagrange equation

As noted earlier, at an extremal the first variation

δF(η,y) = 〈η(x),E(x)〉2 =

∫ x1

x0

η(x)E(x)dx = 0

for all η(x) ∈H . From Lemma 2.2.2, we can therefore state that

E(x) =

[

∂ f
∂y

− d
dx

(

∂ f
∂y′

)]

= 0,

the Euler-Lagrange equation.✷
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Example: geodesics in a plane

Let (x0,y0) = (0,0) and(x1,y1) = (1,1), find the shortest path between
these two points.

The length of a line segment fromx to x+δx is

δs =
√

δx2+δy2

=

√

1+

(

δy
δx

)2

δx

ds =
√

1+ y′2dx

δ s δy

δ x

x

y

So the total path length isF{y}= ∫ x=1
x=0 ds =

∫ 1
0

√

1+ y′2 dx
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Example: geodesics in a plane

The arclength of a curve described byy(x) will be

F{y}=
∫ 1

0

√

1+ y′2 dx

Then

d
dx

(

∂ f
∂y′

)

− ∂ f
∂y

=
d
dx

(

y′
√

1+ y′2

)

−0 = 0

So y′√
1+y′2

is a constant, implyingy′ = const. Hencey(x) = c1x+ c2, the

equation of a straight line.

◮ Q: how do I know this is a minimum?
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Special cases
Now that we know the Euler-Lagrange (E-L) equations, we can use them
directly, but there are some special cases for which the equations simplify,
and make our life easier:

◮ f depends only ony′

◮ f has no explicit dependence onx (autonomous case)

◮ f has no explicit dependence ony

◮ f = A(x,y)y′+B(x,y) (degenerate case)
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Special case 1
When f depends only ony′ the E-L equations simplify to

∂ f
∂y′

= const

An example of this is calculating geodesics in the plane (which we all
know are straight lines).
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f depends only ony′

Geodesics in the plane are a special case off = f (y′), with no explicit
dependence ony. Apply the chain rule to theE-L equation and we get

d
dx

∂ f
∂y′

= 0

d2 f (y′)
dy′2

dy′

dx
= 0

d2 f (y′)
dy′2

y′′ = 0

so one of the two following must be true

f ′′(y′) = 0

y′′ = 0
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f depends only ony′

◮ If f ′′(y′) = 0, thenf (y′) = ay′+b. We will later see that problems in
this form are “degenerate”, and solutions don’t depend on the
curve’s shape.

◮ If y′′ = 0, then
y = c1x+ c2.

So for non-degenerate problems with onlyy′ dependence the extremals
are straight lines

◮ e.g. geodesics in the plane
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Examplef depends only ony′

Consider finding the extremals of

F{y}=
∫ 1

0
αy′4−βy′2,dx

such thaty(0) = 0 andy(1) = b.
The Euler-Lagrange equation is

d
dx

[

4αy′3−2βy′2
]

= 0

We could play around with this for a while to solve, but we already know
the solutions are straight lines, so the extremal will be

y = bx
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Fermat’s principle

Fermat’s principle of geometrical optics:

Light travels along a path between any two points such that
the time taken is minimized

Take the speed of light to be dependent on the media, e.g.c = c(x,y), the
time taken by light along a pathy(x) is

T{y}=
∫ x1

x0

√

1+ y′2

c(x,y)
dx

Fermat’s principle says the actual path of light will be a minima of this
functional.
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Speed of light

The speed of light (EM radiation) is only constant in a vacuum

medium speed (km/s) refractive index

vacuum 300,000 1.0

water 231,000 ∼ 1.3

glass 200,000 ∼ 1.5

diamond 125,000 ∼ 2.4

silicon 75,000 ∼ 4.0

Refractive index =c/v
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Example

Considerc(x,y) = 1/g(x)

T{y}=
∫ x1

x0

g(x)
√

1+ y′2 dx

f (x,y,y′) = g(x)
√

1+ y′2

f has no explicit dependence ony so

∂ f
∂y′

= const

g(x)
y′

√

1+ y′2
= const
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Example (ii)

g(x)
y′

√

1+ y′2
= c1

y′2

1+ y′2
=

c2
1

g(x)2
impliesc2

1 ≤ g(x)2

y′2 =
c2

1

g(x)2
(1+ y′2)

y′2
(

1− c2
1

g(x)2

)

=
c2

1

g(x)2

y′ =

√

c2
1

g(x)2− c2
1
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Example (iii)

y′ =

√

c2
1

g(x)2− c2
1

y = c1

∫
1

√

g(x)2/c2
1−1

dx+ c2

The constants,c1 andc2 are determined by the fixed end points.

◮ so not all extremals are straight lines

◮ we had to include anx term here to make it more interesting
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What we can’t do (yet)

Remember,f must have at least two continuous derivatives. If the speed of light
c(x,y) has discontinuities, then we are in trouble.

0(x ,y )0

1(x ,y )1

Variational Methods & Optimal Control: lecture 04 – p.34/40

How we might solve

Break into two problems, with a boundary point(x∗,y∗), which has a fixed
value ofx∗ (the location of the boundary), but a movable value fory∗.

*(x ,y )*

0(x ,y )0

1(x ,y )1

0

1

φ
φ
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The functional

F{y}=
∫ x∗

x0

√

1+ y′2

c0
dx+

∫ x1

x∗

√

1+ y′2

c1
dx

Separate into two problems, as if we knew(x∗,y∗). Each is a geodesic in
the plane problem. So the solutions are straight lines

y(x) =

{

(x− x0)
y∗−y0
x∗−x0

+ y0 x ≤ x∗

(x− x∗) y1−y∗

x1−x∗ + y∗ x ≥ x∗

Now we can explicitly computeF{y} as a function ofx, by differentiating
y, and then we can treat it as a minimization problem in one variabley∗.
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The total time taken

We can simplify the integrals by noting from Pythagoras thatthe lengths
of the two lines are

√

(x∗− x0)2+(y∗− y0)2 and
√

(x∗− x1)2+(y∗− y1)2

and that the time take to traverse the pair of line segments will be

T{y}=
√

(x∗− x0)2+(y∗− y0)2

c0
+

√

(x∗− x1)2+(y∗− y1)2

c1

dT
dy∗

=
(y∗− y0)

c0 [(x∗− x0)2+(y∗− y0)2]1/2
− (y1− y∗)

c1 [(x∗− x1)2+(y∗− y1)2]1/2
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The result

dT
dy∗

=
(y∗− y0)

c0 [(x∗− x0)2+(y∗− y0)2]1/2
− (y1− y∗)

c1 [(x∗− x1)2+(y∗− y1)2]1/2

=
sinφ0

c0
− sinφ1

c1

which we require to be zero to find the minimum. Hence

sinφ0

c0
=

sinφ1

c1
⇐ Snell’s law for refraction

Hence there are often ways around discontinuities, though it may involve
some pain

(e.g. what about internal reflection)
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More than one boundary

Snell’s law applies at each boundary

*(x ,y )*

1(x ,y )1

0(x ,y )0

0

1

φ
φ
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Dealing with “kinks”

◮ We’ll spend a fair bit of time later on dealing with “kinks” incurves

◮ Underlying point
⊲ The integral can still be well defined even if extremal isn’t

“smooth”
⊲ But the Euler-Lagrange equations don’t work at the kinks
⊲ Use the Euler-Lagrange equations everywhere except the kinks
⊲ Do something else at the kinks
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