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Euler-Lagrange equation

Theorem 2.2.1: LefF : C2[xo,%1] — R be a functional of the form

Fovh= [ fxy.y) dx

wheref has continuous partial derivatives of second order witheesto
X, ¥, andy’, andxg < X;. Let

S={y € C?[xo,x] | (%) = Yo andy(xa) = y1 },

whereyg andy; are real numbers. If € Sis an extremal foF, then for all

X € [Xo,X4]
d (ory ot g
dx \ oy’ ay
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Special case 2

Whenf has no dependence amwe call this an autonomous problem, and
we can replace the E-L equations with

H(y,y) = )/% —f(y,y) = congt

We will seeH again later — it often turns out to be a conserved quantity
like energy, and so arises naturally in computing the shpecatenary.
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Autonomous case

The autonomous case is whefr@das no explicit dependence &iso
of /ox=0.

Theorem 2.3.1: LetJ be a functional of the form

oyt = [y

1

and define the functioH by

ThenH is constant along any extremal pof
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Proof of Theorem 2.3.1

d d of

o
of  dof of ,of
= Vo Vaey Yoy oy
_ (a0 ot
a (dxav_6y>
= 0
So
H(y,y) = congt
O

NB: this is a first order differential equation for the extrm

Variational Methods & Optimal Control: lecture 05 — p.5/28

The Catenary

Catenary is derived from the Latin word catena, which meahaih”
Examples: power-lines, hanging chains, spider web
The catenary is also called

» chainette (French)

» alysoid (the catenary is a special case of an alysoid)
http://ww. 2dcur ves. com exponenti al / exponenti al a. ht

» funicular curve (a funicular polygon is formed by having adco
fastened at its ends, with weights at different points).
http://dictionary.die.net/funicul ar%0curve
A funicular rail (for instance) uses a chain to pull its capsausteep
slope.
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The Catenary

The potential energy of the cable
is y A

Wo{y} = /O ] mgy(s)ds

WherelL is the length of the ca-
ble

= mass
gravitational constant

@
|
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The Catenary, reformulation

As with geodesic in the plan

ds= /1+y2dx

So the functional of interest (the potential energy) is
X1
Wo{y} = mg /XO yv 1+y2dx
which does not contair explicitly.

f
H(y,Y) :yg—y, f = congt.

wheref (y,y) = y/1+Yy?2.
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http://www.2dcurves.com/exponential/exponentiala.html
http://dictionary.die.net/funicular%20curve

The Catenary (iii)

C = H(y7)/)
= y’%—f wheref (y,y) = yv/1+y?2
vy
-y iy
aVity? = ywr-y(1+y?)
Clw = -y

The Catenary (v)

Now
d 1 1 du
& (COSh u) = m&a

So takingu = y/c; we get

1

1 1
VY /&g —16

d ~1
&cosh (y/c1) =

So, the integral above results in

d(1+y?) = ¥ X—Cp = cycosht(y/cy).
Y 2
1+yz 4
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The Catenary (iv) The Catenary (vi)

If c; = 0 the only solution iy = 0.
If ¢, # 0 then, rearrange to get

dy _ ¥y
dx  \/ &
dx = 21 dy
é_
/dx = / 21 dy
y
?1—1
X—Cp :/ y21 dy
?1—1
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The extremals are thus given by

y = clcosh(xgcz)

1

In particular, the minimal potential energy occurs wlygakes this form,
acatenary.

The constants; andc;, are determined by the end conditions, the heights
of the poles, e.gy(Xo) = Xo andy(x;) = ;.

Notice | didn’t specifyL anywhere here.
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Catenaries of differerit

15
— =252
L —1=2.10
—1=2.30
—1=2.50
—1=2.70
0.5 —1=2.90
1 -05 0 05 1
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Finding the constants

[EE
o

¢, cosh(l/cl)

[y
o

1

N

[
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Finding the constants

cosh is arevenfunction so ifx, = —1 andx; = 1, andy; =y, then the
constant, = 0. So we can rewrite this as

y(X) =1 cosh<i>

C1

which we solve fory(1) = ¢, cosh(1/c;) = y; to getc;.
» non-linear, so solve numerically

For instance/(1) = 2 we get two possible values = 0.47 andc; = 1.697
» they don't have to both be minima
» one could be a maxima, or a stationary point
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Finding the constants

25

1.5}

0.5}

-0.5 0 0.5 1
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Existence of a solution

In the above solution, note that for some valuegydindy;, we can get
multiple solution, but in some cases there may be a uniqusign| or no

solutions!!!
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Calculating the functional

Now note that

cost(x) =

so that

F{y}

(cosh2x) +1)/2

_ % 1 ll(cosr(ZX/cl)+1)dx

1 1
= %/ dx+%/ cosh(2x/cy) dx
2J1 2/

ot

= oty [sinh(2x/c1)]*

= C+ ﬁ sinh(2/c;)

2
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Calculating the functional

Once we know, it is (in principle) easy to calculate{y}, e.g., for the
catenary note the following identities

and so

F{y}

%cl coshix/c1) = sinh(x/c;)

1+sinkf(x/c;) = cosH(x/cy)

= [ yieyRox
-1

— /llclcosr(x/cl) \/ 1+ sinkP(x/cp) dx

— /11c1 cost(x/c1) dx
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Calculating the functional

You can think of the length as changing slowly, so at eachtpoitime,
the shape is a catenary with consteqytwhere this varies over time, i.e.,

optimise WRT toc.
[ =
- —y,=1250
45 —y,=1509
y, = 1.750
! —_y, =2.000
> .
U_-'35 :
3
2.5j
l\.HHH\HH\HH\ [EEERE)
0 3 4
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The length of the Catenary

L{y} — /ivﬁ+y%k
= /1 cosh(x/cy) dx

= c[sinh(x/ci)]Y,
= 2c;sinh(1/c)
But note that in this version of the problem we casglt the length, it is an

output. Later on we will constrain the length so it is an infauthe
problem.
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Catenary addendum

forces must be balance in equilibrium so tension in the cable (which
must be in the direction of the cable) must balance the hot&dorceF
at the lowest point, and the downwards foFge The results is

FV
tan6 = —
Ry
dy _ gms
dx Ry

wherems is the mass of the cable integrated fr@@ns| along the cable,
andF is constant.
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Catenary addendum

The usual explanation for the shape of the catenary is basadsonple
physical argumentiorces must be balancein equilibrium.

x=0
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Catenary addendum

Taking derivatives with respect towe get

day _ dmg
dx dx dx R4
where we know thaf® = /1+y2 so
y _mg

Jity?2 R
which has the same solution, but nowhas a meaning

y(X) = % cosh(%x) .
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The shape of an arch Other arches

Flip a catenary upside down, , » Sheffield Winter Garden
and the above argument shows http://en.w ki pedi a. org/wi ki/ Sheffiel d Wnter_Garden
simply that the strongest form http://al gebraproj ect 07. wi ki spaces. coni Mat henati cal +I nf or mat i

of an arch is an inverted cate- 3 » Arches under Gaudi’s Cassa Kl
nary. This balances the forces http://en. wi ki pedi a. or g/ wi ki / Casa_M | UC3%AO

at each point, so that the arch is Eﬁéﬁ?i'im b in St Paul's Catherdal
under the least possible stress. 2 —— full-height catanery > - omg in St Paul's Catherdal -~ )
— catenary ttp://en.wkipedia.org/wki/St_Paul %27s_Cat hedr al

There are others but they often aren’t exact catenaries etioes they
are parabolas, which is also the shape of a suspension {Bdy¥, the
difference is tiny for such cases)

91 0 1

Note thatFy must be applied to the edges or the arch

will collapse outwards.
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The shape of an arch Some history
However, this argument assumes that the arch’s own weiglfittisat » 1638, Galileo, a hanging cord is an approximate parabothttes
matters. Commonl){, an arch supports a v_vaII a_bove_, and sotbeds are approximation improves as the curvature gets smaller
not so simply described. The shape that is optimal is clastiret shape of . _ _ . _
a suspension bridge, which we shall see in tutorials is abotaa » Joachim Jungius showed it wasn't a parabola (publishedhpostusly in
1669)

» BTW, the Gateway Arch in St Louis isn’t strictly a catenaryigs
sometimes claimed.

http://ww. springerlink.confcontent/u7734w06700776x0/

» the optimal form changes if the “arch” isn't a pure curve, bag
shape.

» Hooke discovered optimal shape of arch in 1671 publisheslat laatin
Anagram

> Published posthumously in 1705 as “Ut pendet continuumléiegic
stabit contiguum rigidum inversum”, meaning “as hangs élflexcable
so, inverted, stand the touching pieces of an arch.”

» Derived by Leibniz, Huygens and Johann Bernoulli in 1691

» Euler worked on related problems in 18th century
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http://www.springerlink.com/content/u7734w06700776x0/
http://en.wikipedia.org/wiki/Sheffield_Winter_Garden
http://algebraproject07.wikispaces.com/Mathematical+Information+of+Sheffield+Winter+Garden
http://en.wikipedia.org/wiki/Casa_Mil%C3%A0
http://en.wikipedia.org/wiki/St_Paul%27s_Cathedral
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