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Euler-Lagrange equation

Theorem 2.2.1: LefF : C2[xo,%1] — R be a functional of the form

Fovh= [ fxy.y) dx

wheref has continuous partial derivatives of second order witheesto
X, ¥, andy’, andxg < X;. Let

S={y e C?xo,x] | y(%o) = yo andy(x:) = y1 },

whereyg andy; are real numbers. If € Sis an extremal foF, then for all

X € [Xo,X4]
d (ory ot g
dx \ oy’ ay
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Special case 2: autonomous
problems continued

H(y,Y) ZY%— f(y,y) = const

We will seeH again later — it often turns out to be a conserved quantity
like energy, and so arises naturally in computing the shafieeo
brachystochrone.
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Autonomous case

The autonomous case is whefr@das no explicit dependence &iso
of /ox=0.

Theorem 2.3.1:Let J be a functional of the form

oyt = [y

1

and define the functioH by

ThenH is constant along any extremal pof
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Example: Brachystochrone

The time taken is
Potential energy = mgy(x)

y
T{y} :/OLV((j_S A (%, Yo Kineticenergy=12myv 2

The energy of a body is the sum of po-
tential and kinetic energy

E = 2V + moy(x)

and a simple conservation law says this
is constant, so

2E

V(X) =1/ —20¥(x)
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Example: Brachystochrone (iii)

Look for extremals of

X; 2
T{W}:/1 1+va’ dx
X0

which does not contair explicitly.

of w2 [14+w?\ Y2 1+w2
oty Ly W( )y
_ [1+w?
1+W2 w

W(1+W’2)
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Example: Brachystochrone (ii)

As for the geodesic in the plane
ds=+/1+y?dx

So the functional of interest (the time taken) is

We can perform a substitution

w9 = 52 (2 -2y )

And note thatv? = y'2, so (ignoring the constant factor efl/2g) we
look for extremals of
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Example: Brachystochrone (iv)

H(w,w) = const

So we can write

W(1+V\/2) =C
Letw = tang, then 1+w? = se¢@and fork; = ¢;/2
-9 _ €1C08 @ = K1 [1+ cog2¢)]
seG@

—V(; = —2K1Sin(2¢) = —4K, cog @) sin(¢)
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Example: Brachystochrone (v)

Also dw/dx = tang, which means

1o
dw  tang ®
Also
dx dxdw
do — aw do = —4K;c08 = —2K1(1+ cog29))
Integrating
X =Ko —K1(2¢+sin(2¢))
Along with

w = K1 [1+4 cog2¢)]

we have a parametric form of the solution.
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Example: Brachystochrone solution

Take® + m= 2@ and we get

X = K2+Ki1(68—sin(0))

w = Ki[l—cog8)]
Lets change back tg rememberingv(x) = 2—19 (£ —2gy(x)), and that
E = Zmv?+ mgy = const andv(Xo) = 0, so thaE = mgyo, hence

Yy=Yo—W

Note thaty(x) doesn’t depend og or m!
Now y(xo) = Yo and sow(8p) = 0, which we get wheB, = 0.
Now X(8p) = %o and sk, = Xo, SO the solution is
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Cycloids
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Example: Brachystochrone solution

TakeB + 1= 2@ and we get

= Xo+K1(0—sin(B))
Yo —Ki[1—cog®)]

Now, note thay(x;) = y1. We find6; first by solving

Y1 = Yo—Ki[1—cog6)]

[1—cog61)] = Yo
K1

cogf;) = 1—y°K_lyl

8, = arccos(l—u>
K1
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Cycloids

Newton’s aerodynamic problem

“If in a rare medium, consisting of equal particles freelgmbsed at equal
distances from each other, a globe and a cylinder describedwal
diameter move with equal velocities in the direction of this @f the
cylinder, the resistance of the globe will be half as greahasof the
cylinder ... | reckon that this proposition will be not witlicapplication in
the building of ships”.

Isaac Newton, Principia Mathematica
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More than one possible solution!!
We need to find the fastest one!
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Meaning ofH

» H is aconservedquantity.

» In physics often see such, e.g. the energy
H is not energy in Brachystochrone problem

» Can derive conservation laws mathematically.
rather than deriving them as physical laws

» later on we consider Noether’s theorem
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Newton’s aerodynamical problem

Consider finding the optimal shape of a rocket’s nose conedardghat it
creates the least resistance when passing through air.
Assumptions:

» Airis thin, and composed of perfectly elastic particles:

> particles will bounce off the nose cone with equal speed, and
equal angle of reflection and incidence.

> We ignore tangential friction.

> We ignore “non-Newtonian” affects such as those from
compression of the air.

Realistic for high-altitude, supersonic flight

Variational Methods & Optimal Control: lecture 06 — p.16/32




Newton’s aerodynamical problem

Consider finding the optimal shape of a rocket’s nose conederdhat it
creates the least resistance when passing through air.
Assumptions:

» As the rocket may rotate along its length, the nose cone neust b
circularly symmetric, and so we reduce the problem to one of
determining the optimal profile of the nose cone.

» The rocket’s nose cone must have radi et its base, and length
and its shape should be convex
> its profile must be concave and non-increasing
> ratioL/2Ris called theiineness ratio
> bigger is better, though little gain for 5: 1
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Newton’s aerodynamical problem

Force=ma

» m=mass
» a= acceleration = change in velocity

a=V—s=2vsirte.
Scale constants so that
2vm=1,

and then
1 1

1+coB0  1+y?

Force = Sinf0 =
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Newton’s aerodynamical problem
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Newton’s aerodynamical problem

» Previous calculation gives force per partietel/(1+y?)
Need to integrate over surface area
» Surface area at radixds

v

21X dX.

» Scaling to remove irrelevant constants, the functionatieig the

resistance
F{ }—/R—X o
y - 0 1+y,2 ]

» subject toy(0) = L andy(R) = 0 and
y <0andy’>0
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Newton’s aerodynamical problem

The Euler-Lagrange equations are

aof of 4 2y
dxdy dy dx(1+y?)2

So for a given constam we get

2y

(T+y2? = °

Rearranging we get

2y = c(1+y?)?
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Newton’s aerodynamical problem

Solution looks almost like a blunted cone
» perhaps that seems counter-intuitive?
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Newton’s aerodynamical problem

We'll solve this when we get to optimal control.
For now here is the parametric solution without explanation

1
x(u) = c<a+2u+u3)zg(1+u2)2

7 3
= L=— — _ 0 2, 24
y(u) c( nu 4+u +4u)

But notice that
dy _dydu dy dx
dx dudx du’du
from which it is relatively clear that this is a solution.
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Newton’s aerodynamical problem
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Alternatives: cylinder

Cylinder:
F =0.500
y =0
R 1
F{y} = /xdx
0
0.8
R
2 0.6
ForR=1
F—1/2 0.4
0.2
0
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Alternatives: sphere

SphereR=L=1

F =0.250
Xy = 1
1
y = —XxJy
= —X/V1-X2 0.8
Fly} = /OW 0.6
1
= /x(l—xz)dx 0.4
0
1 0.2
4
0
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Alternatives: cone

Cone:
F=0.250

y = -L/R
F X '
vk = /o 11 (L/R)2 o

B R2
21+ (L/R)?) 0.6
ForR=L=1 04
F=1/4 0.2
0
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Alternatives: frustum of cone

Frustum of cone: corner at

0 x<a
y = {—L/(R—a) x>a °

a R

Fiy} — /Oxo|x+/a —1:y,2dx 08
a’L?+R*(R—a)? 0.6
22+ (R—a?)

F=0.191

0.4
Optimal value ofa:

(L2 +2R?) — LvVL2 +4R?
2R 0

0.2
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Alternatives: optimal

Optimal profile:
F computed numerically

F =0.187

0.8

0.6

0.4

0.2
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Typical shapes

» Note that the frustum of a cone isn’t much worse than the agtim
shape.

» other shapes: ogive, Haack, ...

» In the context of bullets a flattened end is calledeplat.
> typically justified by
* making all bullets precise
+ tips are hard to get just right
* impact damage
> but they wouldn't do it if it wasn’t working
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Alternatives: Haack series

Haack series:

http://en.wikipedia.org/wiki/Nose_cone_design
http://www.info-central.org/?article=125

http://mcfisher.0catch.com/other/machl/machl.htr 1

http://www.if.sc.usp.br/ ~ projetosulfos/arti

F computed numerically

0.8

0.6

0.4

0.2

F1=0.187,F2=0.240
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Bullets
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http://en.wikipedia.org/wiki/Nose_cone_design
http://www.info-central.org/?article=125
http://mcfisher.0catch.com/other/mach1/mach1.htm
http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF
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