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Special case 2: autonomous
problems continued

H(y,Y) Z)/g—;, — f(y,y) = condt

We will seeH again later — it often turns out to be a conserved quantity
like energy, and so arises naturally in computing the shap®eo
brachystochrone.
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Euler-Lagrange equation

Theorem 2.2.1: L€ : C2[Xo, X1] — IR be a functional of the form

F{y}=/XOX1f(w,>/)dx,

wheref has continuous partial derivatives of second order witheesto
X, y, andy’, andxp < X;. Let

S— {y c Cz[xo,xl] \ Y(Xo) = Yo andy(X;) = Y1} ;

whereyy andy; are real numbers. if € Sis an extremal foF, then for all

X € [Xo,Xq]
d (of\ _of |
dx \ay / oy
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Autonomous case

The autonomous case is whdréas no explicit dependence gnso
dof /ox=0.

Theorem 2.3.1:Let J be a functional of the form

Hy} = /XX f(y,y)dx

and define the functioH by

H(y,Y) = V——f( Y)

ThenH is constant along any extremal ynf
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Example: Brachystochrone

he time taken is
Potential energy = mgy(x)

T{y}: LE yA (%, Yo Kineticenergy=1/2myv 2
o VIS

he energy of a body is the sum of po-
ntial and kinetic energy

1

E = Smv(x)° +mgy(x)

1d a simple conservation law says this
constant, so

W e
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Example: Brachystochrone (i)

As for the geodesic in the plane
= v/ 1+Yy2dx

So the functional of interest (the time taken) IS

T [ V

We can perform a substitution

W(X) = 21g (f — 29y(><>)

Zgy

And note thawv? = y?, so (ignoring the constant factor efl/2g) we
look for extremals of
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Example: Brachystochrone (iii)

Look for extremals of

which does not contair explicitly.

Hww) =w Il —t

ow' W W W
B w2 1+w?2
o Jwadrw?) w
B -1
VW w?)
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Example: Brachystochrone (iv)

H(w,w') = congt
So we can write
W(l—I—V\/Z) = C1
Letw = tang, then 1+w? = se¢@and fork, = ¢; /2

G _
T C1C0S @= K1 [1+4 cog2¢)]
dw . -
ap = —2K1SIin(2¢) = —4K1coq Q) Sin()
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Example: Brachystochrone (v)

Also dw/dx = tang, which means

dx_ 1

d_VV — ﬁp — COt(p

Also

dx dxdw

i = — 1 2

G0~ dwdo 4k1C0S Q= —2K1(1+ cog29))
Integrating

X = Ko — K1(20+ sin(29))

Along with

W= K1 [1+cog2¢)]

we have a parametric form of the solution.
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Cycloids
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Example: Brachystochrone solution

TakeB + t1= 2¢p and we get

X = Ky+Ki(0—sin(9))
W = Ki|1—co90)]

Lets change back tp rememberingv(x) = 5 (% —2gy(x)), and that
E = 2mv2+mgy = const andv(xXo) = 0, so thatE = mgyo, hence

Y=Yo—W

Note thaty(x) doesn’t depend og or m!
Now y(Xg) = Yo and sow(8y) = 0, which we get whe®y = 0.
Now X(68p) = Xp and sk, = Xp, SO the solution is
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Example: Brachystochrone solution

TakeB + t1= 2¢p and we get

X = Xo+Ki1(6—sin(0))
Y = Yo—Ki[l—cog0)]

Now, note thay(x;) = y;. We find©; first by solving

Y1 = Yo—Ki[l—cog6)]
1—cog6;)] — Yo— Y1

I
|

cog0)

0, = arccos<1—yo_y1)
K1
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Cycloids

0 5 10 15
More than one possible solution!!
We need to find the fastest one!
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Meaning ofH

B H is aconservedguantity.

B In physics often see such, e.g. the energy
H is not energy in Brachystochrone problem

B Can derive conservation laws mathematically.
rather than deriving them as physical laws

B |ater on we consider Noether's theorem
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Newton’s aerodynamic problem

“If in a rare medium, consisting of equal particles freelgmbsed at equal
distances from each other, a globe and a cylinder described/aal
diameter move with equal velocities in the direction of thes @f the
cylinder, the resistance of the globe will be half as gredahasof the
cylinder ... | reckon that this proposition will be not witlcapplication in
the building of ships”.

Isaac Newton, Principia Mathematica
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Newton’s aerodynamical problem

Consider finding the optimal shape of a rocket’s nose conedardhat it
creates the least resistance when passing through air.
Assumptions:

B Air is thin, and composed of perfectly elastic particles:

m particles will bounce off the nose cone with equal speed, and
equal angle of reflection and incidence.

® \We ignore tangential friction.

® \We ignore “non-Newtonian” affects such as those from
compression of the air.

Realistic for high-altitude, supersonic flight
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Newton’s aerodynamical problem

Consider finding the optimal shape of a rocket’s nose conedardhat it
creates the least resistance when passing through air.
Assumptions:

B As the rocket may rotate along its length, the nose cone naust b
circularly symmetric, and so we reduce the problem to one of
determining the optimal profile of the nose cone.

B The rocket’s nose cone must have radi et its base, and length
and its shape should be convex
M its profile must be concave and non-increasing
m ratioL /2Ris called theiineness ratio
B bigger is better, though little gain for 5: 1
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Newton’s aerodynamical problem

It is irrelevant whether we move Y

. . A
the object, or the medium, so ]
assume the latter for conve- V

nience. \/
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Newton’s aerodynamical problem

We can calculate the angle be- Y,
tween the incident particle and

the tangent to the surface by L
simple trig

cotd = tan(r/2—-0) = —y.
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Newton’s aerodynamical problem

The angle of incident equals the

Y\
angle of reflection.

L
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Newton’s aerodynamical problem

The angle between the reflected Y,

particle and the vertical is@ LA
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Newton’s aerodynamical problem

The velocity in the vertical di- yA
rection after the collision is ]
s=vcog20) =v(1—2sirto). v
)
Y
s|20
V
Y
R >
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Newton’s aerodynamical problem

Force= ma

B M= mass
B a = acceleration = change in velocity

a=V—S=2vsirte.
Scale constants so that
2vm=1,

and then
1 1

1+coBB  14y?

Force = Sirnfo =
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Newton’s aerodynamical problem

® Previous calculation gives force per partielel /(1+y?)
B Need to integrate over surface area
B Surface area at radixgs

21X dX.
B Scaling to remove irrelevant constants, the functionatdleisg the
resistance
R X o
F{yl =
B subject toy(0) = L andy(R) = 0 and
y <0andy’” >0
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Newton’s aerodynamical problem

The Euler-Lagrange equations are

dof af d 2xy

dxoy dy dx(1+y?2)2 0

So for a given constarmt we get

2xy

(Lry22 ="

Rearranging we get

2xy = c(l+y?)?
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Newton’s aerodynamical problem

We’'ll solve this when we get to optimal control.
For now here is the parametric solution without explanation

1 C
x(u) = c(a+2u+u3):a(1+u2)2

_ 4 2 3 4
y(u) = Lc(lnuZJru +Zu>

But notice that
d_y_ dydu dy/dx B
dx dudx du’du
from which it is relatively clear that this is a solution.

—Uu

Variational Methods & Optimal Control: lecture 06 — p.22/



Newton’s aerodynamical problem

Solution looks almost like a blunted cone
B perhaps that seems counter-intuitive?

1.2

1

lo.s
|06
0.4

o2

0 0.5 1
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Newton’s aerodynamical problem
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Alternatives: cylinder

Cylinder:
F = 0.500
y = 0 ——
R 1
F{y} = /xdx
0
2 0.8}
2 0.6}
ForR=1
0.2}
0
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Alternatives: cone

Cone:
y = —L/R
Pyl = /oR1+()|j/R)2dX
2
 2(1+(L/R?)
ForR=L=1
F—1/4

F=0.250
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Alternatives: sphere

SphereR=L=1

F =0.250
X+yr = 1 —
1
y = =Xy
= —X/vV1-X? 0.8}
1y N
F{y} T /Ol_l_y/z 0.6}
1
= /x(l—xz)dx 0.4}
0
4
%
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Alternatives: frustum of cone

Frustum of cone: corner at

0 x<a
Y = {—L/(R—a) x>a

a R
/xdx+/ X > 0-81
0 a 1+VY

a’L? + R?(R—a)? 0.6
2(L2+ (R—a)?)

F=0.191

F{y}

0.4}

Optimal value ofa:
0.2}

(L242R?) — L2+ 4R?
2R 0
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Alternatives: optimal

Optimal profile:
F computed numerically F =0.187

0.8}

0.6}

0.4}

0.2}
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Alternatives: Haack series

Haack series:

http://en.wikipedia.org/wiki/Nose _cone_design F1=0.187, F2 =0.240
http://www.info-central.org/?article=125

http://mcfisher.Ocatch.com/other/machl/machl.htrr 1

http://www.if.sc.usp.br/ ~ projetosulfos/arti

0.8
F computed numerically

0.6

0.4

0.2
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http://en.wikipedia.org/wiki/Nose_cone_design
http://www.info-central.org/?article=125
http://mcfisher.0catch.com/other/mach1/mach1.htm
http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF

Typical shapes

m Note that the frustum of a cone isn’t much worse than the agtim
shape.

B other shapes: ogive, Haack, ...

B In the context of bullets a flattened end is calledeplat.

m typically justified by
making all bullets precise
¢ tips are hard to get just right
Impact damage

B but they wouldn’t do it if it wasn’t working
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Bullets
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