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Invariance of the E-L
equations

We side-track here to note that extremals found using the E-Lequations
don’t depend on the coordinate system! This can be very useful – a
change of co-ordinates can often simplify a problem dramatically.
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Euler-Lagrange equation

Theorem 2.2.1: LetF : C2[x0,x1]→ IR be a functional of the form

F{y}=
∫ x1

x0

f (x,y,y′)dx,

where f has continuous partial derivatives of second order with respect to
x, y, andy′, andx0 < x1. Let

S =
{

y ∈C2[x0,x1]
∣

∣ y(x0) = y0 andy(x1) = y1
}

,

wherey0 andy1 are real numbers. Ify ∈ S is an extremal forF , then for all
x ∈ [x0,x1]

d
dx

(

∂ f
∂y′

)

− ∂ f
∂y

= 0
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Invariance of the E-L equations

The extremals found using the E-L equations don’t depend on the
coordinate system!

For instance take co-ordinate transform

x = x(u,v)

y = y(u,v)

◮ smooth: if functionsx andy have continuous partial derivatives.

◮ non-singular: if Jacobian is non-zero

For example, the path of a particle does not depend on the coordinate
system used to describe the path!
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Notation

Use the notation

xu =
∂x
∂u

For example, the Jacobian for transformx = x(u,v) andy = y(u,v) can be
written

J =

∣

∣

∣

∣

∣

xu yu

xv yv

∣

∣

∣

∣

∣

= xuyv − xvyu

Note that ifJ 6= 0 the transform is invertible.

◮ treatu like the independent variable (likex)

◮ treatv like the dependent variable (likey)
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Transformingdy/dx

Treatv like a functionv(u). The chain rule says forx = x(u,v)

dx
du

=
du
du

∂x
∂u

+
dv
du

∂x
∂v

so

dx
du

= xu + xvv′

dy
du

= yu + yvv′

wherev′ = dv/du. So

dy
dx

=
dy/du
dx/du

=
yu + yvv′

xu + xvv′
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Transforming functional

Transforming the functional, we get

F{y} =
∫ x1

x0

f (x,y,y′)dx

=
∫ u1

u0

f

(

x(u,v),y(u,v),
yu + yvv′

xu + xvv′

)

(xu + xvv′)du

=

∫ u1

u0

f̃ (u,v,v′)du

Relabel the functional to get

F̃{v}=
∫ u1

u0

f̃ (u,v,v′)du
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Fixed end-point problem

Find extremals of functionalF : C2[x0,x1]→ IR given by

F{y}=
∫ x1

x0

f (x,y,y′)dx,

and the extremal is in the setS

S =
{

y ∈C2[x0,x1]
∣

∣ y(x0) = y0 andy(x1) = y1
}

,

Becomes, find extremals of̃F : C2[u0,u1]→ IR given by

F̃{v}=
∫ u1

u0

f̃ (u,v,v′)du

and the extremal is in the setS

S̃ =
{

v ∈C2[u0,u1]
∣

∣ v(u0) = v0 andv(u1) = v1
}

,
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Relation between extremals

Theorem: Let y ∈ S andv ∈ S̃ be two functions that satisfy the smooth,
non-singular transformationx = x(u,v), andy = y(u,v), theny is an
extremal forF if and only if v is an extremal for̃F .

Proof Sketch: The proof needs to show that the Euler-Lagrange equations
for both problems produce the same extremals.
We can do so, by noting that

d
du

(

∂ f̃
∂v′

)

− ∂ f̃
∂v

= J

[

d
dx

(

∂ f
∂y′

)

− ∂ f
∂y

]

As the transform is non-singularJ 6= 0, so if either side is zero, the
Euler-Lagrange equation is satisfied for both problems.
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Some of the details

f̃ (u,v,v′) = f

(

x(u,v),y(u,v),
yu + yvv′

xu + xvv′

)

(xu + xvv′)

∂ f̃
∂v

=

(

∂ f
∂x

xv +
∂ f
∂y

yv +
∂ f
∂y′

∂
∂v

(

yu + yvv′

xu + xvv′

))

(xu + xvv′)

+ f
∂
∂v

(xu + xvv′)

∂ f̃
∂v′

=
∂ f
∂y′

(xu + xvv′)
∂

∂v′

(

yu + yvv′

xu + xvv′

)

+ xv f

J = xuyv − xvyu

Variational Methods & Optimal Control: lecture 08 – p.10/26

Example

Polar (circular) coordinates have

x = r cosθ
y = r sinθ

and inverse transform

r =
√

x2+ y2

θ = arctan
(y

x

)

y

x

θ

r

Find extremals ofF{r}=
∫ θ1

θ0

√

r2+ r′2 dθ

Variational Methods & Optimal Control: lecture 08 – p.11/26

Example

For the inverse transform

rx = x/
√

x2+ y2

ry = y/
√

x2+ y2

θx = (−y/x2)/(1+(y/x)2) =−y/(x2+ y2)

θy = (1/x)/(1+(y/x)2) = x/(x2+ y2)

using d
dz arctan(z) = 1

1+z2
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Example

The Jacobian

J = det

(

rx θx

ry θy

)

= det

(

x/
√

x2+ y2 −y/(x2+ y2)

y/
√

x2+ y2 x/(x2+ y2)

)

=
x2+ y2

(x2+ y2)3/2

= 1/
√

x2+ y2

J 6= 0 everywhere except(x,y) = (0,0), where it is undefined.
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Example

dr
dθ

=
rx + ryy′

θx +θyy′

=
x/
√

x2+ y2+ yy′/
√

x2+ y2

−y/(x2+ y2)+ xy′/(x2+ y2)

=
√

x2+ y2 x+ yy′

−y+ xy′

r2+

(

dr
dθ

)2

= (x2+ y2)+(x2+ y2)

(

x+ yy′

−y+ xy′

)2

= (x2+ y2)

[

1+

(

x+ yy′

−y+ xy′

)2
]
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Example

r2+

(

dr
dθ

)2

= (x2+ y2)

[

1+

(

x+ yy′

−y+ xy′

)2
]

= (x2+ y2)

[

1+
x2+2xyy′+ y2y′2

y2−2xyy′+ x2y′2

]

= (x2+ y2)

[

y2−2xyy′+ x2y′2+ x2+2xyy′+ y2y′2

y2−2xyy′+ x2y′2

]

= (x2+ y2)

[

x2+ y2+(x2+ y2)y′2

y2−2xyy′+ x2y′2

]

=
(x2+ y2)2(1+ y′2)

(−y+ xy′)2
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Example

Now

dθ
dx

=
∂θ
∂x

+
∂θ
∂y

dy
dx

= − y
(x2+ y2)

+
x

(x2+ y2)
y′

=
−y+ xy′

(x2+ y2)

dx
dθ

=
(x2+ y2)

−y+ xy′

r2+

(

dr
dθ

)2

= (1+ y′2)

(

dx
dθ

)2
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Example

Given that
r2+

(

dr
dθ

)2

= (1+ y′2)

(

dx
dθ

)2

The functional can be rewritten

F{r} =

∫ θ1

θ0

√

r2+ r′2 dθ

=
∫ θ1

θ0

√

1+ y′2
dx
dθ

dθ

F̃{y} =

∫ x1(r1,θ1)

x0(r0,θ0)

√

1+ y′2 dx

which is just the functional for finding shortest paths in theplane!
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Example

Given thatf (r,r′) =
√

r2+ r′2 does not depend explicitly onθ we can
construct the constant function

H(r,r′) = r′
∂ f
∂r′

− f =
r′2√

r2+ r′2
−
√

r2+ r′2 = const

which we can rearrange to getr′ = r
√

c2
1r2−1 which we can rearrange to

get
θ =

∫
dr

c1r2
√

1−1/c2
1r2

and integrate to get

θ+ c2 =−sin−1

(

1
c1r

)

or Ar cos(θ)+Br sin(θ) =C
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Special case 4
When f = A(x,y)y′+B(x,y) we call this a degenerate case, because the
E-L equations reduce to

∂A
∂x

− ∂B
∂y

= 0

but we can’t necessarily solve these, and when they are true,the
functional’s value only depends on the end-points, not the actual shape of
the curve.
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Degenerate cases

Take f = A(x,y)y′+B(x,y), so that the functional (for which we are
looking for extrema) is

F{y}=
∫ x1

x0

A(x,y)y′+B(x,y)dx

Then the Euler-Lagrange equation can be written as

d
dx

∂ f
∂y′

− ∂ f
∂y

= 0

d
dx

A(x,y)−
[

y′
∂A
∂y

+
∂B
∂y

]

= 0

∂A
∂x

+ y′
∂A
∂y

−
[

y′
∂A
∂y

+
∂B
∂y

]

= 0
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Degenerate cases

So the extremals for

F{y}=
∫ x1

x0

A(x,y)y′+B(x,y)dx

satisfy

∂A
∂x

− ∂B
∂y

= 0

This is not even a differential equation!

◮ may or may not have solutions depending onA andB

◮ no arbitrary constants, so can’t impose conditions

◮ maybe true everywhere?
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Degenerate cases

∂A
∂x

− ∂B
∂y

= 0

Where there is a solution, there exists a functionφ(x,y) such that

∂φ
∂y

= A

∂φ
∂x

= B

Thus,
∂A
∂x

=
∂2φ
∂x∂y

=
∂2φ
∂y∂x

=
∂B
∂y
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Degenerate cases

In this case, the integrandf (x,y) can be written

f =
∂φ
∂y

y′+
∂φ
∂x

=
dφ
dx

So the functional can be written

F{y} =
∫ x1

x0

f (x,y,y′)dx

=
∫ x1

x0

dφ
dx

dx

= [φ(x,y)]x1
x0

= φ(x1,y(x1))−φ(x0,y(x0))

So the functional depends only on the end-points!
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Example

Let f (x,y,y′) = (x2+3y2)y′+2xy so the functional is

F{y}=
∫ x1

x0

[

(x2+3y2)y′+2xy
]

dx

ThenA(x,y) = (x2+3y2) andB(x,y) = 2xy, so the E-L equation reduces
to

∂A
∂x

− ∂B
∂y

= 2x−2x = 0

which is always true, for any curvey!
this is what we mean by an identity

Hence the Euler-Lagrange equation is always satisfied.
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Example

If we chooseφ(x,y) = x2y+ y3+ k then

∂φ
∂y

= x2+3y2 = A

∂φ
∂x

= 2xy = B

So the functional is determined by the end-points, e.g.

F{y}= x2
1y1+ y3

1− x2
0y0− y3

0

and this does not depend on the curve between the two end points.
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Theorem

Suppose that the functionalF satisfies the conditions of such that its
extremals satisfy the Euler-Lagrange equation, which in this case reduces
to an identity. Then the integrand must be linear iny′, and the value of the
functional is independent of the curvey (except through the end-points).

Basically this says that the degenerate case above only occurs for
f (x,y,y′) = A(x,y)y′+B(x,y).
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