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Euler-Lagrange equation

Theorem 2.2.1: LefF : C2[xo,%1] — R be a functional of the form

Fovh= [ fxy.y) dx

wheref has continuous partial derivatives of second order witheesto
X, ¥, andy’, andxg < X;. Let

S={y € C?[xo,x] | (%) = Yo andy(xa) = y1 },

whereyg andy; are real numbers. If € Sis an extremal foF, then for all

X € [Xo,X4]
d (ory ot g
dx \ oy’ ay
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Invariance of the E-L
equations

We side-track here to note that extremals found using theshtlations
don’t depend on the coordinate system! This can be very bsetu
change of co-ordinates can often simplify a problem dracadyi.

Variational Methods & Optimal Control: lecture 08 — p.2/26

Invariance of the E-L equations

The extremals found using the E-L equations don’t dependhen t
coordinate system!

For instance take co-ordinate transform
X = x(uVv)
y = yuv)

» smooth: if functionsx andy have continuous partial derivatives.
» non-singular: if Jacobian is non-zero

For example, the path of a particle does not depend on thelicade
system used to describe the path!
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Notation

Use the notation
_ o
=50
For example, the Jacobian for transfoxm: x(u,v) andy = y(u,v) can be
written
Xu Yu
Xy W

J= = XuYv — XwWu

Note that ifJ # 0 the transform is invertible.
» treatu like the independent variable (liké
» treatv like the dependent variable (likg
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Transforming functional

Transforming the functional, we get

X1

Fivb = [ foony)ox

X0

Uy
— [ (X0 2 ) o

up
= f(u,v,V)du

Uo

Relabel the functional to get

F{v}= /ulJl f(uv,v)du

0
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Transformingdy/dx

Treatv like a functionv(u). The chain rule says for= x(u,v)

dx _duox  dvox
du dudu dudv

SO
dx
qu = etw
d
d_)lj = YutW

whereV = dv/du. So

dy dy/du_ yu+wWv
dx dx/du  X,+xV
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Fixed end-point problem

Find extremals of functiond : C2[xo,x;] — R given by

X1
Flyh= [ fcyy)ox
and the extremal is in the sBt

S= {y € C?[xo,xa] | Y(%0) = Yo andy(xs) = y1},

Becomes, find extremals &f: C?[up, us] — IR given by

F{v} = /UU1 f(uv,v)du

0
and the extremal is in the sBt

S= {v e C?uo, ur] | v(up) = vo andv(uy) =v1 },
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Relation between extremals

Theorem: Lety € Sandv € Sbe two functions that satisfy the smooth,
non-singular transformatian= x(u,v), andy = y(u,v), theny is an
extremal forF if and only if vis an extremal foF .

Proof Sketch: The proof needs to show that the Euler-Lagrange equations
for both problems produce the same extremals.
We can do so, by noting that

d (of\ of _rd (aty of
dul\aov /) ov ~|dx\ady/ oy

As the transform is non-singuldr# 0, so if either side is zero, the
Euler-Lagrange equation is satisfied for both problems.
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Example

Polar (circular) coordinates have A
X = rcosd y
y = rsin@

and inverse transform

r — ‘/X2+y2

0 = arctan(% )

0
Find extremals oF {r} = / ' V2 +r2d0
6o
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Some of the details

e _ Yu+ W
fluvv) = f(x(u,v),y(u,v),Xu+XVv,)(xu+xv\/)

of  (of_ of  9f 0 [yu+wV
o <6xx"+0yyv+ay’av<xu+x\,\/ (% +x)
0
+f—(xu+xv\/)

ov

of of 9 <yu+yv\/> .y

o ay( JrV\/)a_\/ Xy + XV

J = XuW—XWu
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Example

For the inverse transform

rx = X/\/)?y2

ry = y/V2+Y

O = (—Y/XZ)/(1+(Y/X)2)—— ¢ +y)
B = (1/%)/(1+(y/¥)?) =x/(C+Y)

using| £ arctar(z) =

1-|-z2
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Example

The Jacobian

det( O )
ry 6y

Y/\/XR+Y2 X/ (X2 +y?)

et( X/\/ ¥y

X2 +y?

(2 +y2)3/2

= 1//xX+y?

J # 0 everywhere excefk,y)

—y/ (@ +y?) >

= (0,0), where itis undefined.
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Example

dr\?
2 R
r+<de>

X +y?)
X +y?)
X +y?)
) |

0

e 2

_”(—ymﬂ)]

[ X+ 29y +yy?

Re=rd

(Y2 — 2xyY + X2Y2 4+ X2 + 2xyy + Y2y?

S e

Y2+ (4 Y)Y
—2xyy’+x2y’2]

+YR(L4Y?)

(—y+xy)?
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Example

dr
de

My + ryy

KTV W T

=Y/ (€ +Y?) +xy /(3 +¥?)

= VXY —r XYY

= (C+y)+ (¢
= (C+y) |1+

—-y+xy
+y2)<_x+yy )2

y+xy

(5]
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Example

Now

do 30 00dy

dx ~ ox ' dydx
_ y X y
R4y (R+y?)
Yy

(0 +y?)

dx (¥ 4yY)

a8 —y+xy

2 dX 2

) - e ()
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Example

Given that ,  [dr\? o (O ?
(@) =0 ()
The functional can be rewritten
9
F{r} = /1\/r2+r’2d6
6o
61 dx
— 2 2~
/90 VIty? ok

. X1(r1,01)
Fyy = / V1+y?dx
X

0(ro,80)

which is just the functional for finding shortest paths in pene!
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Special case 4

Whenf = A(x,y)Y + B(x,y) we call this a degenerate case, because the
E-L equations reduce to

oA 0B _
ox oy

but we can’t necessarily solve these, and when they arettree,
functional’s value only depends on the end-points, not ttead shape of
the curve.
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Example

Given thatf (r,r") = v/r2+r'2 does not depend explicitly dhwe can
construct the constant function

r/2

— /12412 = congt

of
N2
H(r,r)_rar/ f N

which we can rearrange to gét=r/c2r2 — 1 which we can rearrange to

get e_/ dr
cirzy/1—1/c2r?

and integrate to get

0+cp=—sint <C_1r> or Arcog6)+Brsin(6) =C
1
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Degenerate cases

Take f = A(x,y)y + B(x,y), so that the functional (for which we are
looking for extrema) is

F{y} = /XOX TAY)Y + B(X,Y)

Then the Euler-Lagrange equation can be written as

dof _of _

dxoy oy
d 0A 0B
&A(X’y)_{ya_ﬁa_y] =0
a_A_|_ %_ %_'_G_B =0
ox oy dy oy
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Degenerate cases

So the extremals for
F{y} = /XO AXY)Y +B(x,y) dk

satisfy

oA_0B _
ox oy

This is not even a differential equation!
» may or may not have solutions dependingfoandB
» no arbitrary constants, so can’timpose conditions
» maybe true everywhere?
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Degenerate cases

In this case, the integranfdx,y) can be written

_0p , 09 do
=3 tox~ ax
So the functional can be written

X1

Fivh = [ fooyy)

Xo

% d

o

= oY)

= O(xe,Y(x1)) — 9%, V(%))

So the functional depends only on the end-points!
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Degenerate cases

0A 0B

ox oy

Where there is a solution, there exists a functpox y) such that

09
@_A
oo
x B

Thus,
0A_0%9 O _0B
0X 0xdy Oyox oy
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Example

Let f(x,y,Y) = (X2 + 3y?)y + 2xy so the functional is
Fivk= [ (00 +37)y +2] o
Xo

ThenA(x,y) = (X2 + 3y?) andB(x,y) = 2xy, so the E-L equation reduces
to
0A 0B
x dy 2Xx—2x=0
which is always true, for any curwe
this is what we mean by an identity

Hence the Euler-Lagrange equation is always satisfied.
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Example

If we choosep(x,y) = X2y +y3 +k then

0] 2

— = y=A

5y X2 + 3y

00 B

x ~ =8

So the functional is determined by the end-points, e.qg.
F{y} =xy1+Y; — X% — ¥

and this does not depend on the curve between the two endgpoint
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Theorem

Suppose that the functionglsatisfies the conditions of such that its

extremals satisfy the Euler-Lagrange equation, whichimdabase reduces
to an identity. Then the integrand must be lineay'irand the value of the
functional is independent of the curygexcept through the end-points).

Basically this says that the degenerate case above onlysoimru
fF(xy,Y) =AXYy)Yy +B(xy).
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