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Extension 1: higher-order
derivatives

When f includes higher-order derivatives then the E-L equati@msloe
extended, e.g., if the function includeg’aterm, i.e.,f(x,y,Y,y”’), then
of _dof  d of

dy dxody = dx2oy’
but now we now need extra edge conditions. A simple exampleie
consider is the shape of a bent bar.
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Extensions

Now we consider extensions to the simple E-L equations ptedeso far:

» whenf includes higher-order derivatives, e.§(x,y,Y,y’), e.g., the
shape of a bent bar.

» when there are several dependent variables Yiie.a vector), e.g.,
calculating a particles trajectory.

» when there are several independent variables %iie.a vector), e.g.
calculating extremal surface.
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Standard Euler-Lagrange equation

Theorem 2.2.1: LeF : C2[xo,X1] — R be a functional of the form

Fovh= [ "t (xyy) dx,

wheref has continuous partial derivatives of second order witheesto
X, Y, andy’, andxp < x;. Let

S={y e C?xo, ] | y(x0) = yo andy(xa) = y1 },

whereyy andy; are real numbers. If € Sis an extremal foF, then for all

X € [Xo,X1]
d (ofy ot
dx \ay / ody
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Higher-order derivatives

Let F : C?[xg,x1] — IR be a functional of the form

Fivi= [ fxy.y.y) dx

wheref has continuous partial derivatives of second order witheesto
X, ¥, Y, andy’, andxg < x;. As before, the necessary condition for the
extremum is that the first variation be zero, e.g.

dF(n,y)=0

Variational Methods & Optimal Control: lecture 09 — p.5/23

First Variation

So, now the first variation will be given by

F{y+en} —F{y}

& (n.y) = lim "€
= / [nﬂﬂ] of +n”ﬁ] dx
—Jx % ay”
[T, _+/ __gg_ dof]
- Moy, ey Taxay " dxay’

_ [nﬂ X@[n/ﬂ} _[niﬁ}
oy |, oy |, | dxdy’],

_|_/Xl- ﬂ_ Eﬂ_i_ d_zﬂ dx
%o _”ay r]dxay’ r]dxzay”
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Taylor’s theorem

As before we perturlg to gety=y-+¢€n
Once again we apply Taylor's theorem to derive

f(x,y+en,y+en,y' +en’) =

, of ,of ,of ,
fluyyy) +e[ng e 3 2] o)

and hence that

X , of ,of , of
F{y+en}—/XOf(X,y,>/,>/)+e[ +n—+n

i 2
3y 6)/’] dx+ O(g7)
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New boundary conditions

We require new fixed-end point conditions

Which gives

Sy — /Xl of dof d of
Y= oMoy T axay T ooy
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Fixing the end-points

We now fix the derivative and value gfat the end points.
YA
y=y+en

(Xlly])
y =Yy(X)

(X0:Y0)

r b
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Generalization

Let F : C?[xo,x1] — IR be a functional of the form

X1
F{y}=/XO fy,Y,...,y")dx,

wheref has continuous partial derivatives of second order witheesto

XYY, ...,¥™, andxy < x;, and the values of Y, ...,y""Y are fixed at
the end-points, then the extremals satisfy the condition

ﬂ_gﬂ+d_2£+...+(_l)n££—o
dy dxoy  dx2oy” dxn gy

This is sometimes called theuler-Poisson Equation.
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4th Order Euler-Lagrange equation

oF (n,y) = 0O for arbitraryn satisfying the boundary conditions, so the
result is the 4th order Euler-Lagrange equation

of dof d?af

dy dxdy T axdy’
This is a 4th order differential equation.
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Example 1

Fiv) = [ (ary?)ox
subjecttoy(0) =0,y(1) =1y(0) =1y (1) =1

of

y — ©

d of
xay O
2 2 4,
LA PV
dx2 oy’ dx? dx4
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Example 1 (cont)

The E-P equation gives

d2 of  _d%

" T

a2 3y’ 0

The solution is
Y(X) = € + CoX+ Cax> 4 C4X°
Given the end-points

Example 2 (cont)

A

y(0)=0 = ¢ =0
Y0 =1 = c,=1
y1)=1 = Ct+CstCa=1 Final solution isy(x) = x
Y(1)=1 = c;+2c3+3c4=1 > X
U2\
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Example 2 Example 2 (cont)

Fivi= [ (V7 ) o
subject toy(0) = 1,y(11/2) = 0,y'(0) =0,y (17/2) = -1

of

y 7
d of
axay ~ 0
d2 of dy

oeay ~ lad

Notice thex? doesn’t influence the form of extremal!
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The E-P equation gives

af  d? af d%y

=-2y+2—=0

oy T aay 4

The solution is

y(x) = Ae“+ Be X+ Csinx+ D cosx

Given the end-points

y(0)=1
y(0)=0
y(/2) =0
y(/2)=-1

G

A+B+D=1
A-B+C=0
A2+ Be ™24 C=0
AeV? _Be2_D=-1
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Example 2 (solution)

V(x) = cogx)

A

Example 3

Lety: [0,d] — IRdescribe the shape of the beam, and0,d] — IR be the
load per unit length on the beam.

For a bent elastic beam the potential energy from elasteefois
d
Vp = ;/ y?dx, k= flexural rigidity
] 0
1
The potential energy is
d
Vo=~ [ p(9y( o
Thus the total potential energy is
d K 12
V= [ —p0y( ox
> ¢
T2\
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Example 3 Example 3

Bent elastic beam.

A

Two end-points are fixed, and clamped so that they are lewgl, e
y(0) =0,y (0) =0, andy(d) = 0 andy'(d) = 0.
The load (per unit length) on the beam is given by a functipr).

Variational Methods & Optimal Control: lecture 09 — p.18/23

The Euler-Poisson equation is

of _dot & ot

dy dxay  dx2oay”
—p()+Kky® = 0

yo - PX

This DE has solution

Y(X) = P(X) 4 Cax® + CoX* + C1X -+ Co

where thec’s are the constants of integration, aR(X) is a particular
solution toP® (x) = p(x) /K.
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Example 3: uniform load

If the beam is uniformly loaded, they{x) = p and so

X!
y(X)zfer

The end-conditions imply

X + CoX? + C1X+ Co

yO = 0 =¢=0
Y0 = 0 =c¢ =0

4
yd) = 0 :ﬂ+co+cld+ch2+C3d3:0

41K

3
}/(d) =0 :>E+01+ZC2d+3C3d2:O

3k
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Example 3: uniform load

Lo P(d=x)2¢
Maximum displacement occursxat d/2, and is given by

oo pd?

Contrast this with the catenary.

J(x) =1 cosh(X — Cz)

C1

wherec; andc; are determined by the end-points (there are no physical
values such asior g in the solution).
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Example 3: uniform load

Choose a solution of the form

p(d —x)%x?

y(x) ==,

Then the derivative

2 Y
XZZp(d X)X +p(d X)X

y() 1 1 0 d

We can see that the constraints are satisfied

y(0 = 0
y(©0 = 0
yd) = 0
yd) =0
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