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Extensions

Now we consider extensions to the simple E-L equations ptedeso far:

m whenf includes higher-order derivatives, e.g§(x,y,y,y’), e.g., the
shape of a bent bar.

B when there are several dependent variables yiis.a vector), e.qg.,
calculating a particles trajectory.

B when there are several independent variables Xiis.a vector), e.g.
calculating extremal surface.
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Extension 1: higher-order
derivatives

Whenf includes higher-order derivatives then the E-L equati@mshe
extended, e.qg., if the function includeg’aterm, i.e.,f(x,y,y,y"), then

of _dof  dof _
dy dxoy dx2oy’

but now we now need extra edge conditions. A simple exampleie
consider is the shape of a bent bar.
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Standard Euler-Lagrange eqguation

Theorem 2.2.1: L€ : C2[Xo, X1] — IR be a functional of the form

F{y}=/XOX1f(w,>/)dx,

wheref has continuous partial derivatives of second order witheesto
X, y, andy’, andxp < X;. Let

S— {y c Cz[xo,xl] \ Y(Xo) = Yo andy(X;) = Y1} ;

whereyy andy; are real numbers. if € Sis an extremal foF, then for all

X € [Xo,Xq]
d (of\ _of |
dx \ay / oy
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Higher-order derivatives

Let F : C?[Xo,X1] — IR be a functional of the form

F{y}z/:f(x,y,x/,x/’)dx,

wheref has continuous partial derivatives of second order witheesto
X,V¥,Y, andy’, andxg < x;. As before, the necessary condition for the
extremum is that the first variation be zero, e.qg.

oF(n,y) =0
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Taylor’s theorem

As before we perturlg to gety=y—+&€n
Once again we apply Taylor’s theorem to derive

f(x,y+en,y +en,y’ +¢en”) =

/ of /a]c //ﬂ 2
feyy.y) e n S+ en' S| o

and hence that

X1

of ,of  of

F{y+en}=/ f(x,y,y,x/’)+8[na—y+n’a—y,+n W] dx+ O(?)

X0
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First Variation

So, now the first variation will be given by

. F{y+en} —F{y}
oF(n,y) = lim -

B /X1 of g+ 017

o | OY y’
_ [pof L [pof +/ of dot doty,
- _n oy |, f] 0y | . dxay’ i dx ay”
[t [0 ™[ d of
B _rlay’_x0 oy oy |, r]dxay”
_|_/X1 d of d? of dx
Xo oy dx oy’ r]dxz oy

Variational Methods & Optimal Control: lecture 09 — 27/



New boundary conditions

We require new fixed-end point conditions

N(Xo)
n'(Xo)

Which gives
OF(n,y) =

Yo yX1) = W
Yo Y(x1) = ¥

/Xl af_daerd_zﬂ dx
Xo " dy dxoy  dx2oy”

Variational Methods & Optimal Control: lecture 09 — 28/



Fixing the end-points

We now fix the derivative and value gfat the end points.
\

y=y+en

(X11y1)
y = Y(X)

(XO 1y0)

y b '¢
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4th Order Euler-Lagrange equation

OF (n,y) = O for arbitraryn satisfying the boundary conditions, so the
result is the 4th order Euler-Lagrange equation

of d of +d_2ﬂ
oy dxoy dx2ay”

This is a 4th order differential equation.
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Generalization

Let F : C?[Xo,X1] — IR be a functional of the form

X1
F{y}=/XO f(x,y,Y,...,y")dx,

wheref has continuous partial derivatives of second order witheesto

X V.Y, ...,y andxy < X1, and the values of, Y, ...,y("Y are fixed at
the end-pomts then the extremals satisfy the condition

of daf d? of d" of

ol e (—1)" —
oy dxay’erx2 6y”Jr + )dx” oy 0

This is sometimes called th&uler-Poisson Equation.
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Example 1

Fiy) = [ 14y

subjecttoy(0) =0,y(1) =1y (0) =1y (1) =1

0f

a_y = 0

d of
oy ~ °
2 2 4
ot d ., dy
dx2 oy” dx? dx?
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Example 1 (cont)

The E-P equation gives

The solution is

@ ot _dy |
dx2 oy’ Tdx4

Y(X) = C1 + CoX+ CaX° + CaX°

Given the end-points

y(0) =0
y(0) =1
y(1) =1
y(1) =1

¢4

CL = 0
=1
Co+C3+cCi=1 Final solution isy(x) = x

C,+2C3+3c,=1
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Example 2

F{y} = /On/z (Y2 —y? +x%) dx

subject toy(0) = 1,y(1/2) =0,y (0) =0,y (1/2) = —1

of

= = _2

oy y
d of
axay O
@ oty
dx2 oy” dx?

Notice thex? doesn't influence the form of extremal!
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Example 2 (cont)

A

T~ =X
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Example 2 (cont)

The E-P equation gives

of d? of d%y
ay Taeay YT egae =0
The solution is

y(X) = Ae" + Be " + Csinx+ D cosx

Given the end-points

y(0O)=1 = A+B+D=1

Y(0)=0 = A—B+C=0
y(/2) =0 = A"24+Be™?+C=0
Y(m/2)=—1 = AeV2-Be™¥2_-D=-1
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Example 2 (solution)

V(X) = cogX)

)

T =X
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Example 3

Bent elastic beam.

A

d

Two end-points are fixed, and clamped so that they are lexgl, e
y(0) =0,y (0) = 0, andy(d) = 0 andy'(d) = 0.
The load (per unit length) on the beam is given by a funcpEeg.
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Example 3

Lety: |0,d] — IR describe the shape of the beam, and0,d| — IR be the
load per unit length on the beam.
For a bent elastic beam the potential energy from elastee®ois

d
vlzg / y2dx., K = flexural rigidity
0

The potential energy is
d
Vo = — [ p(xy(x) o
Thus the total potential energy is

d 12
V= [~ ey o
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Example 3

The Euler-Poisson equation is

of daf d? of

a_y_dxay’+dx20y” =0
—p(X)+Kky?W = 0

@ _ P

y K

This DE has solution
Y(X) = P(X) 4 CaX° + CoX° 4 C1X + Cg

where thecy’s are the constants of integration, afk) is a particular
solution toP* (x) = p(x) /K.
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Example 3: uniform load

If the beam is uniformly loaded, the{x) = p and so

x*
y(X) = % +CaX° + CoX° + C1X + Co

The end-conditions imply
y(0O) = 0 =¢c=0

y0) = 0 =c¢=0
pd*

yd) = 0 =>m—|—00—|—01d+02d2+03d320
pd?
)/(d) = 0 = m +C1 + 2¢cd + 3C3d2 =0
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Example 3: uniform load

Choose a solution of the form

p(d —x)?x?
24K

y(X) =

Then the derivative

- 2p(d—x)x*  p(d—x)*x
Y (x)= 12K + 12K 0 d
We can see that the constraints are satisfied
y(0 = 0
y(0) = 0
yd) = 0
y(d) = 0
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Example 3: uniform load

J(x) = —p(d2_4KX) ”

Maximum displacement occursxat= d/2, and is given by

o on pd?

Contrast this with the catenary.

J(X) = ¢4 cosh(x — C2>
C1

wherec, andc, are determined by the end-points (there are no physical
values such asior g in the solution).

Variational Methods & Optimal Control: lecture 09 — p.23/



	
	
	Standard Euler-Lagrange equation
	Higher-order derivatives
	Taylor's theorem
	First Variation
	New boundary conditions
	Fixing the end-points
	4th Order Euler-Lagrange equation
	Generalization
	Example 1
	Example 1 (cont)
	Example 2
	Example 2 (cont)
	Example 2 (cont)
	Example 2 (solution)
	Example 3
	Example 3
	Example 3
	Example 3: uniform load
	Example 3: uniform load
	Example 3: uniform load

