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Extension 2: several
dependent variables

When there are several dependent variables, i.e.,y is a vector, then the E-L
equations generalize to give one DE per dependent variable.A simple
example is when we calculate the trajectory of a particle in 3D. This
section introduces a number of physics ideas/principles: potentials,
Lagrangians, Hamilton’s principle, Newton’s laws of motion, and
conservations laws.
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Extension

Several dependent variables

◮ in prior problem formulations, we have only one dependent variable
y, which is dependent onx, e.g.y= y(x).

◮ we can extend this to many dependent variablesqi

◮ a typical example might be the position of a particle in 3D space
with respect to time, e.g.(x(t),y(t),z(t))

◮ the particle has three dependent variablesx, y andz
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Definitions

DefineC2[t0, t1] to denote the set of vector functionsq : [t0, t1]→ IRn, such
that forq = (q1,q2, . . . ,qn) its component functionsqk ∈C2[t0, t1] for
k= 1,2, . . . ,n.

◮ i.e. take a set ofn functionsqk(t), with two continuous derivatives
with respect tot, and put them into a vectorq(t)

◮ dot notation:
.
qk =

dqk

dt
,

..
qk =

d2qk

dt2
and

.
q =

(

dq1

dt
,
dq2

dt
, . . . ,

dqn

dt

)

◮ we can define norms on the spaceC2[t0, t1], e.g.

||q||= max
k=1,...,n

sup
t∈[t0,t1]

|qk(t)|
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Functionals

We can define functionals, for example

F{q}=
∫ t1

t0
L(t,q,

.
q)dt

where we choose the functionL to have continuous 2nd-order derivatives
with respect tot, qk and

.
qk, for k= 1, . . . ,n.

For the fixed end-point problem, we look forq ∈ S, where

S= {q ∈ Cn
2[t0, t1]|q(t0) = q0,q(t1) = q1}
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Extremals

As before, we look for extremals by examining perturbationsof q, and
seeing their effect on the functional, e.g. take the perturbation

q̂ = q+ εn

wheren ∈H n, where

H =
{

ni ∈ C2[t0, t1]|ni(t0) = 0,ni(t1) = 0
}

For instance, for a local minima, we require

F{q+ εn} ≥ F{q}

for all n ∈H n andq+ εn in a small neighborhood ofq with respect to
some distance metric.
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Applying Taylor’s theorem

Taylor’s theorem (again)

f (x+δx) = f (x)+
n

∑
i=1

δxi
∂ f
∂xi

+
1
2

n

∑
i, j=1

∂2f
∂xix j

δxiδx j +O(δx3)

Applying with x = (t,q,
.
q), andδx = (0,εn,ε

.
n)

L(t,q+ εn,
.
q+ ε

.
n) = L(t,q,

.
q)+ ε

n

∑
k=1

(

nk
∂L
∂qk

+
.
nk

∂L

∂.qk

)

+O
(

ε2
)
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Deriving the Euler-Lagrange eq.s

As before theFirst Variation is

δF(n,q) =
F{q+ εn}−F{q}

ε

=
1
ε

∫ t1

t0
L(t,q+ εn,

.
q+ ε

.
n)−L(t,q,

.
q)dt

=
∫ t1

t0

n

∑
k=1

(

nk
∂L
∂qk

+
.
nk

∂L

∂.qk

)

dt+O(ε)

= 0

for all n ∈H n asε → 0.

This is still a little too hard for us
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Deriving the Euler-Lagrange eq.s

Note the above must be true for alln ∈H n.

We can simplify by choosing: n1 = (n1,0,0, . . . ,0).

Then the First Variation simplifies

δF(n1,q) =

∫ t1

t0

n

∑
k=1

(

nk
∂L
∂qk

+
.
nk

∂L

∂.qk

)

dt

=

∫ t1

t0

(

n1
∂L
∂q1

+
.
n1

∂L

∂.q1

)

dt

We integrate the term
.
n1

∂L
∂.q

1

by parts as in the derivation of the simple

Euler-Lagrange equation and we get
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Deriving the Euler-Lagrange eq.s

δF(n1,q) =
∫ t1

t0
n1

(

∂L
∂q1

− d
dt

∂L

∂.q1

)

dt

For an extremal we wantδF(n1,q) = 0
for all n1 ∈H = {C2[t0, t1]|n1(t0) = 0,n1(t1) = 0}

Applying Lemma 2.2.2 gives

d
dt

∂L

∂.q1

− ∂L
∂q1

= 0

This is directly analogous to the original Euler-Lagrange equation.
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Deriving the Euler-Lagrange eq.s

We can do likewise for

nk = (0,0, . . . ,0,nk,0, . . . ,0)

in exactly the same fashion to obtain a set of equations

d
dt

∂L

∂.q1

− ∂L
∂q1

= 0

d
dt

∂L

∂.q2

− ∂L
∂q2

= 0

...
d
dt

∂L

∂.qn

− ∂L
∂qn

= 0

The result is analogous to maximiz-
ing a function of several variables,
where we must set all of the partial
derivatives∂ f/∂xk = 0.
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Simple example

Find extremals of

F{q}=
∫ 1

0

(.
q

2
1+(

.
q2−1)2+q2

1+q1q2

)

dt

for q(0) = q0 andq(1) = q1

The Euler-Lagrange equations are

d
dt

∂L

∂.q1

− ∂L
∂q1

= 0

d
dt

∂L

∂.q2

− ∂L
∂q2

= 0
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Simple example

L =
(.

q
2
1+(

.
q2−1)2+q2

1+q1q2

)

So
∂L
∂q1

= 2q1+q2,
∂L
∂q2

= q1

∂L

∂.q1

= 2
.
q1,

∂L

∂.q2

= 2(
.
q2−1)

So the E-L equations are

2
..
q1−2q1−q2 = 0

2
..
q2−q1 = 0
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Simple example

Differentiate the second equation twice with respect tot to get

2q(4)2 −..
q1 = 0

which we rearrange to get
..
q1 = 2q(4)2 , which we can substitute (along

with the second equationq1 = 2
..
q2) into the first equation to get a 4th

order DE forq2, e.g.
4q(4)2 −4

..
q2−q2 = 0
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Simple example

The forth order linear ODE

2q(4)2 −2
..
q2−

1
2

q2 = 0

has characteristic equation

2µ4−2µ2−1/2= 0

which has roots

µ1,µ2 = ±
√

1
2
+

1√
2

µ3,µ4 = ±
√

1
2
− 1√

2
=±im
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Simple example

The solution is

q2(t) = c1eµ1t +c2eµ2t +c3cos(mt)+c4sin(mt)

wherec1,c2,c3 andc4 are determined by the 4 end-point conditions
q(0) = q0 andq(1) = q1.

We can determineq1 from

q1 = 2
..
q2 = 2c1µ2

1e
µ1t +2c2µ2

2eµ2t −2c3m2cos(mt)−2c4m
2sin(mt)
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Example: movement of a particle

Thekinetic energy of a particle is

T =
1
2

mv2(t) =
1
2

m
(.

x
2
(t)+

.
y

2
(t)+

.
z

2
(t)
)

wherev(t) is the speed of the particle at timet.

Assume there exists a scalar function of time and positionV(t,x,y,z),
such that the forces acting on the particle are

fx =−∂V
∂x

, fy =−∂V
∂y

, fz =−∂V
∂z

ThenV is called thepotential energy of the particle.
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The Lagrangian

The functionL(t,x,y,x,
.
x,
.
y,
.
z)

L = T −V

is called theLagrangian

The path of a particle is given byr(t) = (x(t),y(t),z(t)) over the time
interval[t0, t1].

We can define theaction integral by

F{r}=
∫ t1

t0
L(t,r,

.
r)dt
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Hamilton’s principle

The path of a particler(t) is such that the functional

F{r}=
∫ t1

t0
L(t,r,

.
r)dt

is stationary.

◮ could be a saddle point (not just minima)

◮ note, Hamilton’s principle is far more general

⊲ multiple particles
⊲ non-Cartesian coordinates
⊲ remember changing coordinates shouldn’t change extremal

curves
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Generalized coordinates

We can describe the mechanical system by generalized coordinatesq(t).

◮ The kinetic energy is given byT(q,
.
q) = 1

2 ∑n
j,k=1Cj,k(q)

.
qj
.
qk

◮ The potential energy is given byV(t,q)

◮ The Lagrangian isL(t,q,
.
q) = T(q,

.
q)−V(t,q)

Hamilton’s principle states that the path of the particleq(t) will be such
that the functional

F{q}=
∫ t1

t0
L(t,q,

.
q)dt

is stationary.
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Example: a simple pendulum

Kinetic energy

T =
1
2

m(
.
x

2
+

.
y

2
) =

1
2

ml2
.
φ

2

Potential energy

V = mg(l −y) = mgl(1−cosφ)
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m

x(t), y(t)( )l
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The Lagrangian is

L(φ,
.
φ) =

1
2

ml2
.
φ

2
−mgl(1−cosφ)

and the action integral is

F{φ}=
∫ t1

t0

(

1
2

ml2
.
φ

2
−mgl(1−cosφ)

)

dt
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Kepler’s problem of planetary motion

Single planet orbiting the sun.

Kinetic energy

T =
1
2

m
(.

x
2
(t)+

.
y

2
(t)
)

=
1
2

m

(.
r

2
(t)+ r2(t)

.
φ

2
(t)

)

Potential energy

V(r) =−
∫

f (r)dr =−GmM
r(t)

r

φ
sun

planet

where the forcef =−dV
dr =−GmM

r2 (from Newton)
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Hamilton’s principle and EL eq.s

Hamilton’s principle states we should look for curves alongwhich the
function

F{q}=
∫ t1

t0
L(t,q,

.
q)dt

is stationary. The Euler-Lagrange equations are

d
dt

∂L

∂.qk

− ∂L
∂qk

= 0

for all k= 1, . . . ,n, and so for mechanical systems, the Lagrangian
satisfies these equations.
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Newton’s laws

Often the potentialV depends only on location and time, and the kinetic
energy depends only on the derivatives of the position, thenthe
Euler-Lagrange equations reduce to

d
dt

∂T

∂.qk

+
∂V
∂qk

= 0

Given kinetic energy of the formT(
.
q) = 1

2m∑i
.
q

2
i , then the EL equations

become

m
..
qk =− ∂V

∂qk
= fk = the force in directionk

We havederived Newton’s laws of motion, i.e.f = ma from a more
general principle.
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Conservation laws

If the potential does not depend on time, the Lagrangian doesnot
explicitly depend ont and so we may formH(q,

.
q) as before, i.e.

H(q,
.
q) =

n

∑
k=1

.
qk

∂L

∂.qk

−L = const

Given kinetic energy of the formT(
.
q) = 1

2m∑i
.
q

2
i , this becomes

H(q,
.
q) = 2T −L = T +V = const

Thus energy is conserved in such a system.
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Example: a simple pendulum

F{φ}=
∫ t1

t0

(

1
2

ml2
.
φ

2
−mgl(1−cosφ)

)

dt
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x(t), y(t)( )l

The kinetic energy is in the appropriate form, and the potential does not
depend on time, so the pendulum system conserves energy, e.g.

1
2

ml2
.
φ

2
+mgl(1−cosφ) = const

Removing constant terms (where possible), we get

.
φ

2
− 2g

l
cosφ = c1
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Example: a simple pendulum

Given conservation of energy

.
φ

2
− 2g

l
cosφ = c1

To solve, differentiate with respect tot

2
.
φ
[..

φ +
g
l

sinφ
]

= 0

Assume that
.
φ 6= 0, and multiply bym, and we get

m
..
φ +

gm
l

sinφ = 0

which is an equation relating torque to the rate of change of angular
momentum
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Example: a simple pendulum
..
φ +

g
l

sinφ = 0

Motion is quite complicated. Small oscillations approximation sinφ ≃ φ
we get ..

φ +
g
l

φ = 0

and so
φ(t) = Asin

(
√

g
l
t

)

+φ0

which has period 2π
√

l
g
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Brachystochrone in 3D

Find the curve of fastest descent between the points(x0,y0,z0) and
(x1,y1,z1) wherez is height, andx andy are spatial. Considery andz to be
functions ofx. The time for the descent is

√

2gT{y,z}=
∫ x1

x0

√

1+y′2+z′2√
z0−z

dx

The Euler-Lagrange equations are

d
dx

(

y′
√

1+y′2+z′2
√

z0−z

)

= 0

d
dx

(

z′
√

1+y′2+z′2
√

z0−z

)

−
√

1+y′2+z′2

2(z0−z)3/2
= 0
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Brachystochrone in 3D

We can transform the first to get

y′
√

1+y′2+z′2
= c1

√
z0−z

but the second EL equation is a mess. Instead, note that the function f is
not explicitly dependent onx, and so we may derive a function
H(y,y′,z,z′) = constas before. In this case

−H(y,y′,z,z′) = f −y′
∂ f
∂y′

−z′
∂ f
∂z′

= c2
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Brachystochrone in 3D

−H(y,y′,z,z′) = f −y′
∂ f
∂y′

−z′
∂ f
∂z′

=

√

1+y′2+z′2√
z0−z

− y′2
√

1+y′2+z′2
√

z0−z
− z′2
√

1+y′2+z′2
√

z0−z

=
1+y′2+z′2−y′2−z′2
√

1+y′2+z′2
√

z0−z

=
1

√

1+y′2+z′2
√

z0−z
= c2
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Brachystochrone in 3D

The two parts we have derived are

y′
√

1+y′2+z′2
= c1

√
z0−z

1
√

1+y′2+z′2
= c2

√
z0−z

Divide the first, by the second, and we get

y′ =
c1

c2
= const

from which we derivey= c1
c2
(x−x1)+y1, which is the equation of a

vertical plane. Thus the solutions in 3D can be reduced to the solution to
the Brachystochrone in a 2D vertical plane (which is physically obvious).
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Kepler’s problem of planetary motion

Single planet orbiting the sun.

L = T −V =
1
2

m

(.
r

2
+ r2

.
φ

2
)

+
GmM

r

Hamilton’s principle says we have to find stationary curves of the integral
of L, so we can jump straight to the E-L equations

∂L
∂r

− d
dt

∂L

∂.r = 0

∂L
∂φ

− d
dt

∂L

∂
.
φ

= 0
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Kepler’s problem of planetary motion

E-L equationsL = 1
2m

(.
r

2
+ r2

.
φ

2
)

+ GmM
r

∂L
∂r

− d
dt

∂L

∂.r = 0

∂L
∂φ

− d
dt

∂L

∂
.
φ

= 0

give

mr
.
φ

2
− GmM

r2
−m

d
dt

.
r = 0

m
d
dt

r2
.
φ = 0
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Equations of planetary motion

Simplify (assumingm 6= 0 andr 6= 0)

mr
.
φ

2
− GmM

r2
−m

d
dt

.
r = 0

m
d
dt

r2
.
φ = 0

to get

..
r − r

.
φ

2
= −GM

r2

.
φr2 = c
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Interesting aside

The equation
.
φr2 = c, gives the angular velocity

.
φ in terms of distance

from the sun, but also allows us to determine the velocity at right angles to
the direction of the sun as

vr = r
.
φ = c/r

So we can calculate the angular momentum

pa = rm
.
φ = cm

which is constant (as you might expect).
The law also allows one to derive Kepler’s second law (the arcof an orbit
over equal periods of time traverse equal areas).
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Solving the equations

First equation, including the condition
.
φ = c/r2 gives

..
r − r

.
φ

2
= −GM

r2

..
r − c2

r3
= −GM

r2

Now instead of calculating this in terms of derivatives withrespect to
time, lets convert to derivatives with respect toφ. Denote such derivatives
using, e.g.,r ′

.
r =

dr
dφ

dφ
dt

= r ′
.
φ
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Solving the equations

From the chain rule and
.
φ = c/r2 we get

.
r =

dr
dφ

dφ
dt

= r ′
.
φ

..
r =

d
dφ

(

r ′
.
φ
) dφ

dt

=
d
dφ

(

cr′

r2

) .
φ

=

[

cr′′

r2
− 2cr′2

r3

] .
φ

=
c2

r2

[

r ′′

r2
− 2r ′2

r3

]
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Solving the equations

Substitute the above form of
..
r into the first DE and we get

..
r − c2

r3
= −GM

r2

c2

r2

[

r ′′

r2
− 2r ′2

r3

]

− c2

r3
= −GM

r2

Once again note thatr 6= 0, and
.
φ 6= 0 for all but degenerate orbits

(straight lines through the origin), so that we can multiplyby r2/c2 to get

r ′′

r2
− 2r ′2

r3
− 1

r
= −GM

c2
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Solving the equations

Take the substitutionu= p/r and then

u′ = − pr′

r2

u′′ = − pr′′

r2
+

2pr′2

r3

Now note that in our equation forr ′ we get

r ′′

r2
− 2r ′2

r3
− 1

r
= −GM

c2

−u′′

p
− u

p
= −GM

c2

u′′+u =
GMp

c2
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Solving the equations

The equation
u′′+u= k

has a simple solution. The homogeneous form has the solution

u= Acos(φ−ω)

for some constantsA andω and the particular solution is

u= k

So the final solution can be scaled to give

L
r
= 1+ecos(φ−ω)

This is just the equation of a conic section.
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Possible trajectories

◮ e= 0: circle

◮ 0< e< 1: ellipse

◮ e= 1: parabola

◮ e> 1: hyperbola

−5 −4 −3 −2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 e = 0.0 e = 0.5 e = 0.8

semi−latus rectum, l 

L is the semi-latus rectum (dashed line),e is the eccentricity, andω gives
the angle of the perihelion (point of closest approach) which is zero in the
above figure.
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