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Extension

Several dependent variables
» in prior problem formulations, we have only one dependentée
y, which is dependent ox e.g.y = y(x).
» we can extend this to many dependent variabjes

» atypical example might be the position of a particle in 3Dcgpa
with respect to time, e.gx(t),y(t),z(t))

» the particle has three dependent varialdlgsandz
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Extension 2: several
dependent variables

When there are several dependent variablesyiis.a vector, then the E-L
equations generalize to give one DE per dependent variAtdenple
example is when we calculate the trajectory of a particleDnBhis
section introduces a number of physics ideas/principletergials,
Lagrangians, Hamilton’s principle, Newton’s laws of matj@and
conservations laws.
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Definitions

DefineC?[ty,t1] to denote the set of vector functiogs [to,t;] — R", such
that forq = (q1,0p, . . ., gn) its component functiong € C?[to,t;] for
k=1,2,...,n.

» i.e. take a set ofi functionsg(t), with two continuous derivatives
with respect td, and put them into a vectay(t)

» dot notation:

. dgo .. dA . (do dog doy,
%=gt 9= g and _<Eaaa'“aa

» we can define norms on the spac8ty,t1], e.g.
Jall = max_sup Jai(t)]

=L MNtefto,ty]
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Functionals

We can define functionals, for example

Far= [ Lada

where we choose the functianto have continuous 2nd-order derivatives
with respect td, ¢ andq,, fork=1,...,n

For the fixed end-point problem, we look fqre S, where

S={q € C3lto,t1]|q(to) = 0o, q(ts) = a1}
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Applying Taylor's theorem
Taylor's theorem (again)
f(x+x)=f(x)+ Y 8 —+} S ﬂ dx;j +O(8x°)
= zi Xi 2”2:1 XX, Ox; OX;

Applying with x = (t,q,q), anddx = (0,&n, &n)

oL oL
t,g+¢&n,q+¢en) = L(t +e n + +0(¢?
L(t.q-+en.d-+ef) =L(t.q.9) z<kaqk kaqk> (¢7)
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Extremals

As before, we look for extremals by examining perturbatiohg, and
seeing their effect on the functional, e.g. take the pediion

dg=q-+en
wheren € H", where
H = {n € C*[to,t4]|n; (to) = O,i(t1) = 0}
For instance, for a local minima, we require
F{g+en} >F{q}

for alln € #™ andqg + €n in a small neighborhood @f with respect to
some distance metric.
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Deriving the Euler-Lagrange eq.s

As before therirst Variation is

6F(n,q) _ F{q+8n8}_|:{q}

ty
- %/ L(t,q+en,gq+en)—L(t,q,q)dt
to
N
= / z 6L+nkaL dt+0O(e)
t[) k:]_ aqk aQk
=0
forallne #H" ase — 0.

This is still a little too hard for us
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Deriving the Euler-Lagrange eq.s

Note the above must be true for alk #".
We can simplify by choosing: n; = (ny,0,0,...,0).

Then the First Variation simplifies

t 0 oL . oL
6F(n1,q) = /to kZl <nka—qk + nka_qk> dt
— /tl n a_L + r'] a_L dt
= to laql 1aq1

We integrate the terrﬁl(;%L by parts as in the derivation of the simple
1

Euler-Lagrange equation and we get
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Deriving the Euler-Lagrange eq.s

We can do likewise for
Nk = (0,0,...,0,nk,0,...,0)

in exactly the same fashion to obtain a set of equations

doL oL

——— —— =0

dt aql Oql

d oL oL The result is analogous to maximiz-

aa— a—qg =0 ing a function of several variables,
2 where we must set all of the partial

derivativesdf /ox, = 0.

doL oL

—— —— =0

dtog, 0an
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Deriving the Euler-Lagrange eq.s

! oL doL
6F(nl>q) - /to Ny <a—ql - &a—ql> dt

For an extremal we wad~(n;,q) =0
for all ny € H = {C?[to,t1]|n1(tp) = O, Ny (t;) = O}
Applying Lemma 2.2.2 gives

This is directly analogous to the original Euler-Lagrangeation.
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Simple example

Find extremals of
1 W2 . 2 2
Flay= [ (8+ (6~ 12+ + )
for q(0) = qo andq(1) = qa

The Euler-Lagrange equations are

doL odL
——_= -0
dt aql 0qx
doL odL
- — =0
dt (oo g,
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Simple example

.2 .
L= 8+ (G- )2+ +auck)

So
oL JL
a—ql = 201 +0p, a—qz = 01
oL . oL .
—— = 2q,, — = 2(0,—1)
a4y, 1 ad, 2

So the E-L equations are

20, -201— ¢ =
zlq.z_QI =
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Simple example

The forth order linear ODE
20 2%, ~ 56 =0
has characteristic equation
2ut -2 —-1/2=0

which has roots

ot
1 1 :
M = /- —=4im
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Simple example

Differentiate the second equation twice with respedtttnget
4 s
24" — 4, =0

which we rearrange to géf, = 2q§4), which we can substitute (along

with the second equatiam = 2,) into the first equation to get a 4th
order DE forqgp, e.g.

40" — 44, ~ 2 =0
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Simple example

The solution is
O2(t) = c1€M + " + cgcog mt) + ¢4 sin(mt)

wherec, ¢y, 3 andc, are determined by the 4 end-point conditions
d(0) = go andq(1) = qs.

We can determing; from

01 = 2§, = 212" + 2cop5e — 2c3m? cogmt) — 2,0 sin(mt)
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Example: movement of a particle

Thekinetic energy of a particle is

T = Zmi(t) = %m()'(z(t) 0 +E)

wherev(t) is the speed of the particle at tirhe

Assume there exists a scalar function of time and posiigrx,y, z),
such that the forces acting on the particle are

ov ov ov

fx:_&’ y:_a_y> Z:_E

ThenV is called thepotential energy of the particle.
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Hamilton’s principle

The path of a particle(t) is such that the functional

F{r}:/t:lL(t,r,r')dt

is stationary.

» could be a saddle point (not just minima)

» note, Hamilton’s principle is far more general
> multiple particles
> non-Cartesian coordinates

> remember changing coordinates shouldn’t change extremal
curves
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The Lagrangian

The functionL(t,x,y,x,X,Y, 2)

is called thel agrangian

The path of a particle is given byt) = (x(t),y(t),z(t)) over the time
interval [to, t3].

We can define thection integral by

F{r}:/ttlL(t,r,r')dt
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Generalized coordinates

We can describe the mechanical system by generalized cadedq(t).

» The kinetic energy is given by(q,q) = %z?’kzlcj,k(q)djdk
» The potential energy is given M(t,q)
» The Lagrangiani&(t,q,q) = T(q,q) —V(t,q)

Hamilton’s principle states that the path of the partig{e) will be such
that the functional ty .
F{a} = /t L(t,q,q)dt
0

is stationary.
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Example: a simple pendulum

Kinetic energy

Potential energy

o
_1 a2 -2_} 2'2 i
T_ém(x+y)—2mlcp T
1

V =mg(l —y) = mgl(1— cosp)
The Lagrangian is
. 2
L(e.9) = %mlch —mgl(1— cosp)

and the action integral is

F{o} = /<m|2(p mgl(1— cosrp))d
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Hamilton’s principle and EL eq.s

Hamilton’s principle states we should look for curves alevigch the

function .
F{q}—/ L(t,q,q)dt
is stationary. The Euler—Lagrange equations are

forallk=1,...,n, and so for mechanical systems, the Lagrangian
satisfies these equations.
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Kepler's problem of planetary motion

Single planet orbiting the sun.

planet

Kinetic energy

T = m(¥0+50) O
1 .2

= n(Fosroio)
Potential energy

/f Gm)l\/l

where the forcef = — &Y = — S (from Newton)
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Newton’s laws

Often the potentia¥ depends only on location and time, and the kinetic
energy depends only on the derivatives of the position, then
Euler-Lagrange equations reduce to

E oT aV
dt aqk aqk

Given kinetic energy of the form (q) = %mzi q,2 then the EL equations

become

mg, = 3—2;( = fx = the force in directiork

We havederived Newton’s laws of motion, i.ef = ma from a more
general principle.
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Conservation laws

If the potential does not depend on time, the Lagrangian does
explicitly depend ort and so we may formii (g, q) as before, i.e.

H(q,q) = iq a—L—L—const
&
Given kinetic energy of the forfi (q) = %mzi q,2 this becomes

H(q,q) =2T —L =T +V = const

Thus energy is conserved in such a system.
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Example: a simple pendulum

Given conservation of energy

.2 29
¢ —Jcosp=c;

To solve, differentiate with respectto

Z(b['([;Jrlgsin(p} =0

Assume that'p;é 0, and multiply bym, and we get
gm

m'q;+|—sin(p:0

which is an equation relating torque to the rate of changegtikar
momentum
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Example: a simple pendulum

(x(t), y(t))

-

The kinetic energy is in the appropriate form, and the p&ﬁédoes not
depend on time, so the pendulum system conserves energy, e.g

F{g} = /ttl (%mlzclpz —mgl(1— cosnp)) dt

1 .2
Emlzq) +mgl(1— cosp) = const

Removing constant terms (where possible), we get

2 Zg
¢ —J-cosp=c
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Example: a simple pendulum

'q; + Igsin(p: 0
Motion is quite complicated. Small oscillations approxtioa sing~ ¢
we get g
¢+T¢:O

and so

ot) = Asin< Igt) +@

which has period ﬂ\/g

Variational Methods & Optimal Control: lecture 10 — p.28/42




Brachystochrone in 3D

Find the curve of fastest descent between the pdiatso, z0) and

(x1,¥1,21) wherezis height, anck andy are spatial. Considgrandzto be
functions ofx. The time for the descent is

X1 1 2 2/2
vaTiyg = [ o

The Euler-Lagrange equations are

d y _
dx(Wm——z) =0

d Z CV1+y?+z?
V1+y2+ 227 —2 2(z0—2)%?

=0
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Brachystochrone in 3D

—H(yY.,z27) = f—s/——i—

Vity?+22 y? 22
Vio-z L\ J11y?t123/z—2z J1ty2iZ2yzm 2
1+y2+212_y2_2l2
VI+Y2+7227—2
1
= = G

V31t+y2+72/79—2
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Brachystochrone in 3D

We can transform the first to get

Yy
V314y2+272
but the second EL equation is a mess. Instead, note thatrbédn f is

not explicitly dependent or, and so we may derive a function
H(y,y,z Z) = constas before. In this case

= Gva—2Z

_H(y7ylvz7z/):f y,__zla_z,_ 2
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Brachystochrone in 3D

The two parts we have derived are

y
— = -2
V31+y?+22 '
1
= CGVH—2Z

/1+y/2+212
Divide the first, by the second, and we get

y = —1 = const

from which we derivey = & (x— xl) +Yy1, which is the equation of a
vertical plane Thus the solutions in 3D can be reduced to the solution to
the Brachystochrone in a 2D vertical plane (which is physiabvious).
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Kepler's problem of planetary motion

Single planet orbiting the sun.

2
L_T—V_%m<f2+r2cp> +GTM

Hamilton’s principle says we have to find stationary curviethe integral
of L, so we can jump straight to the E-L equations

oL_da. _
or dtor
oL doL

— - =0
0 dtaq)
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Equations of planetary motion

Simplify (assumingn# 0 andr # 0)

mr'2 GmM mgr' =0
¢z Mg T
d 2'
marcp =0
to get
Y GM
o = o
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Kepler's problem of planetary motion

2
E-L equationd. = Zm <F2+ r2g ) + GmM

oL_da
or dtor
oL doaL
—_ 7= -0
give
mrIZ—GmM—mEF =0
¢ r2 dat
d 2'
—r’p = 0
mdtr(p
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Interesting aside

The equatioru'pr2 = ¢, gives the angular velocitciiin terms of distance
from the sun, but also allows us to determine the velocityggt angles to
the direction of the sun as

vr:r(b:c/r

So we can calculate the angular momentum

Pa= rm(b: cm

which is constant (as you might expect).
The law also allows one to derive Kepler's second law (theofem orbit
over equal periods of time traverse equal areas).
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Solving the equations

First equation, including the conditia'm: c/r? gives

Y GM
r—re = Tz
.. 2 GM
' T T2

Now instead of calculating this in terms of derivatives witlspect to
time, lets convert to derivatives with respectgaDenote such derivatives
using, e.g.r’

drdg
dodt
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Solving the equations

Substitute the above form af into the first DE and we get

@  GM

'3 T T

¢ 2] ¢ = GM
r_2 r_z_r—s _r_s - _r—z

Once again note that#£ 0, and(});é 0 for all but degenerate orbits
(straight lines through the origin), so that we can multipyyr2/c? to get

r_” 2r'2 1 GM
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Solving the equations

From the chain rule angi= c/r2 we get

, drdo -
r= %a_r
. dy/,\do
SR

_ (e

~ do\ r2 ¢
cr’  2cr?] -

e e

c? [r” 2r’2]

r2{rz2 3
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Solving the equations

Take the substitution = p/r and then

G = P

- -5
. pr’ 2pr?
! BN

2% 1 GM
r2 3 r c?
u u B GM

p p

GM
U”+U _ 2p

c
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Solving the equations

The equation
U +u=Kk

has a simple solution. The homogeneous form has the solution
u=Acoq¢p— w)
for some constantd andw and the particular solution is
u=Kk

So the final solution can be scaled to give

L
= 1+ecog@—w)
This is just the equation of a conic section.
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Possible trajectories

e=0: circle
0<e<1: ellipse
e=1: parabola
e> 1: hyperbola

vvyyvyy

L is the semi-latus rectum (dashed line)s the eccentricity, and gives
the angle of the perihelion (point of closest approach) Wwisczero in the
above figure.
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