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Extension 2: several
dependent variables

When there are several dependent variablesyiis.a vector, then the E-L
equations generalize to give one DE per dependent variAldanple
example is when we calculate the trajectory of a particleDnBhis
section introduces a number of physics ideas/principleterials,

Lagrangians, Hamilton’s principle, Newton’s laws of matj@and
conservations laws.
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Extension

Several dependent variables

H in prior problem formulations, we have only one dependentie
y, which is dependent ox e.g.y = y(X).

B we can extend this to many dependent varialjjes

B a typical example might be the position of a particle in 3Dcgpa
with respect to time, e.gdx(t),y(t), z(t))

B the particle has three dependent variaklgsandz

Variational Methods & Optimal Control: lecture 10 — 23/



Definitions

DefineC?[ty, ;] to denote the set of vector functiogs [to,t;] — R", such

that forg = (g1, 0o, . ..,qn) its component functiong € C2[to,t;] for
k=12 ...,n.

W i.e. take a set of functionsgy(t), with two continuous derivatives
with respect td, and put them into a vecta(t)
H dot notation:

. dog .. do . (dop dop da,
“=g =g 2 q—(dt’dt’"-’a

m we can define norms on the spat§to,ti], e.g.

lafl = max sup |a(t)
=Nty ]
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Functionals

We can define functionals, for example

F{a} = t1L(t,q,r'4>dt

to

where we choose the functiduito have continuous 2nd-order derivatives
with respect td, g andq,, fork=1,...,n.

For the fixed end-point problem, we look fqre S, where

S= {q € C3[to,t1]|q(to) = do,q(t1) = d1}
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Extremals

As before, we look for extremals by examining perturbatiohg, and
seeing their effect on the functional, e.g. take the pedtinb

d=q+en
wheren € H", where
H = {ni € C[to,ta]|ni(to) = O,ni(t) = 0}
For instance, for a local minima, we require

F{q+en} > F{q}

for all n € #" andqg+ €n in a small neighborhood af with respect to
some distance metric.
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Applying Taylor’s theorem

Taylor’s theorem (again)

n af n
f(X+OX)=TFT(X)+ ) OXi=— + =
(x+0x) = f(x) ; X 2_’2

Applying with x = (t,q,q), anddx = (0,&en,n)

N oL oL
t.g+en,q+en) =L(t +€ n +n +0O(€?
L(t,q-+en,§+eh) =L(t,q,4) Z(kaqk kaqk> (¢°)
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Deriving the Euler-Lagrange eqg.s

As before thd-irst Variation is

F{q+en}—F{q}

OF(n,q) = -
1 ru . :
= L(t,q+en,q+¢en)—L(t,qg,q)dt
to
tg N
— / Z nka—LJrﬁka—_L dt+O(e)
= 0

foralln e A" asg — 0.

This is still a little too hard for us
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Deriving the Euler-Lagrange eqg.s

Note the above must be true for alk #H™.
We can simplify by choosing: n; = (n;,0,0,...,0).
Then the First Variation simplifies

i N oL ., OL
OF (n1,q) = /t Z<nk6—qk+nka—c'h<> dt

0 k=1

We integrate the terrr'll(%L by parts as in the derivation of the simple
1

Euler-Lagrange equation and we get
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Deriving the Euler-Lagrange eqg.s

For an extremal we wad~(n1,q) =0
for all ny € #H = {C?[to,t1]|n1(to) = O,y (t1) = O}
Applying Lemma 2.2.2 gives

d oL oL

=0
dt a('jll aql

This is directly analogous to the original Euler-Lagrangaagion.
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Deriving the Euler-Lagrange eqg.s

We can do likewise for
Nk = (0,0,...,O,nk,O,...,O)

In exactly the same fashion to obtain a set of equations

d oL oL
——— =0
dt aql 001
d oL oL The result is analogous to maximiz-
- = 0 Ing a function of several variables,
dtag, 00 .
where we must set all of the partial
: derivativesdf /ox, = 0.
d oL oL
——>— = 0
dt aqn aqn
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Simple example

Find extremals of
L , 5
F{CI} :L (Ch“l‘(qz—l) —|—q1—|—CI1CI2) dt
for (0) = o andq(1) = qs

The Euler-Lagrange equations are

i
dt a('jll aql
d oL oL
= =0
dt ad, 00y
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Simple example

a2 .
L= (& + (8~ 1)+ 62 + cncp)

So
L i
~s 26117 P 2(612_1)
0q, ad,

So the E-L equations are

2q1_ZQ1_QZ
2.(31.2—C|1
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Simple example
Differentiate the second equation twice with respedtttnget
2q<24) —-q,=0

which we rearrange to gef, = 2q(24), which we can substitute (along

with the second equatiapy = 24,) into the first equation to get a 4th
order DE forqgp, e.g.
aqy) — 44, —gp =0
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Simple example

The forth order linear ODE
.. 1
2q<24) —20q,— QCIZ =0

has characteristic equation

which has roots

— 4+ }+i
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Simple example

The solution is
0o (t) = c1eMt + e + cgcogmt) + casin(mt)

wherec,, C,, c3 andc, are determined by the 4 end-point conditions
q(0) = o andq(1) = qs.

We can determing; from

oh = 27, = 2c 2t + 2c,pse?t — 2c3m? cog mt) — 2¢4m? sin(mt
2 1 >
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Example: movement of a particle

Thekinetic energy of a particle is

T = 2mi(t) = om () +5 1)+ £0))

wherev(t) is the speed of the particle at timhe

Assume there exists a scalar function of time and posti@nx, y, z),
such that the forces acting on the particle are

e NN OV OV
“ ox’ Y oy’ oz

ThenV is called thepotential energy of the particle.
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The Lagrangian

The functionL(t,X,y,X,X,Y, 2)

Is called the_agrangian

The path of a particle is given myft) = (x(t),y(t), z(t)) over the time
interval [to,ty].

We can define thaction integral by
&1

F{r}= [ L(t,r,r)dt

to
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Hamilton’s principle
The path of a particle(t) is such that the functional

&1
F{r}= [ L(t,r,r)dt

to
IS stationary.

B could be a saddle point (not just minima)
B note, Hamilton’s principle is far more general

® multiple particles
B non-Cartesian coordinates

B remember changing coordinates shouldn’t change extremal
curves
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Generalized coordinates

We can describe the mechanical system by generalized cabedy(t).

B The kinetic energy is given b¥/(q,q) = %Z?,kzlcj,k(CI)éle'Ik
B The potential energy is given /(t,q)
B The Lagrangian i&(t,q,q) = T(q,q) —V(t,q)

Hamilton’s principle states that the path of the partople) will be such
that the functional ty

Fla} =/ Lt.a,q)dt
IS stationary. i
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Example: a simple pendulum

Kinetic energy

1 .2 .2
T_ém(x +y)_§m

1 .2
B0

(x(t), y(t))

Potential energy

V =mg(l —y) = mgl(1— cosp)

F~H

The Lagrangian is
: 1 a2
L(¢.9) = 5mi*g —mgl(1 - cosp)

and the action integral is
t

F{o} = (%mlzclpzmgl(lcoscp)> dt

to
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Kepler’s problem of planetary motion

Single planet orbiting the sun.

Kinetic energy

T = om(X0+50)

- sm(Fo+roen)

Potential energy

/f Gmy

dv. _  GmM
2

where the forcd = — =%

(from Newton)
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Hamilton’s principle and EL eqg.s

Hamilton’s principle states we should look for curves alavigch the

function ty
F{a} = / (t,q,q)dt

IS stationary. The Euler- Lagrange equations are

d oL B oL
dt aqk 00k

=0

forallk=1,...,n, and so for mechanical systems, the Lagrangian
satisfies these equations.
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Newton’s laws

Often the potentiaV/ depends only on location and time, and the kinetic
energy depends only on the derivatives of the position, then
Euler-Lagrange equations reduce to

d oT oV
dt aqk aqk

Given kinetic energy of the form (q) = %mzi q,2 then the EL equations

become

mq, = —g—;/k — f, = the force in directiork

We havederived Newton’s laws of motion, 1.ef = ma from a more
general principle.
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Conservation laws

If the potential does not depend on time, the Lagrangian does
explicitly depend ort and so we may forrki (g, q) as before, i.e.

n
H(g,9) =) qka—_L — L = const

k=1 OO0k
Given kinetic energy of the form (q) = %mzi q,2 this becomes

H(g,q) =2T —L=T +V = const

Thus energy is conserved in such a system.
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Example: a simple pendulum

ty

F{o} = (%mlzc'pz—mgl(l—coscp)) dt

to

The kinetic energy is in the appropriate form, and the padedbes not
depend on time, so the pendulum system conserves energy, e.g

1 .2
émlch +mgl(1— cosp) = const

Removing constant terms (where possible), we get

2 2g

¢ —l—COS(P201
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Example: a simple pendulum

Given conservation of energy

.2 2g
¢ — I—COS(P: C1

To solve, differentiate with respectto
9

2c'p[Iq5+|—sincp} =0

Assume that'p;é 0, and multiply bym, and we get

mlp#%nsincpzo

which is an equation relating torque to the rate of changegtiar
momentum

Variational Methods & Optimal Control: lecture 10 — p.27/



Example: a simple pendulum

9

'q; + T sing=20
Motion is quite complicated. Small oscillations approxtmoa sing ~ ¢
we get g
¢+T¢:O
and so

@(t) = Asin ( |9t> + @

which has period ﬂ\ﬁ
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Brachystochrone in 3D

Find the curve of fastest descent between the poMatso, z0) and
(X1,Y1,21) wherezis height, and andy are spatial. Considgrandzto be
functions ofx. The time for the descent is

X1 \/1_|_y/2_|_2/2

20THy,z} = dx
VaTwz = | e
The Euler-Lagrange equations are
d y

= 0

dx \/1+Y’2+sz
d 4 R 0

dx \ \/1+y2+72/2—z 2(20— 2)3/2
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Brachystochrone in 3D

We can transform the first to get

y
\/1_|_y/2_|_Z/2

= CGvd—

but the second EL equation is a mess. Instead, note thatrtbedo f is
not explicitly dependent or, and so we may derive a function
H(y,y,zZ) = constas before. In this case

—H(yY, ZZ’)—f—)/——z’a—Z/: 2
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Brachystochrone in 3D

(yvyl ZZ’>_f_y,_—Z/a_Z/

V1+y?+72 y'? B Z2
Vi —1Z V31+y2+72\/70—2 J/1+y2+72\/7y—2
1_|_y2_|_212_y2_212

1ty + 2272

1

V31+y?+72\/75—72
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Brachystochrone in 3D

The two parts we have derived are

y

= C\Zo—2
1

= CpZp—2

Divide the first, by the second, and we get
C1

= — = const
Y =2

from which we derivey = 2 (X—x1) + Y1, which is the equation of a

vertical plane Thus the solutions in 3D can be reduced to the solution to
the Brachystochrone in a 2D vertical plane (which is phykiabvious).
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Kepler’s problem of planetary motion

Single planet orbiting the sun.

1 .2

. M
L:T—V:—m<r2+r2cp>+Gm

r

2

Hamilton’s principle says we have to find stationary curvethe integral
of L, so we can jump straight to the E-L equations

oL _dodL _
or dtor
oL d oL
it
o dta¢
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Kepler’s problem of planetary motion

r

2
E-L equationd. = 2m <f2+ r2@ ) 4 GmM

oL doL _
or dtor
oL doaL
R §'
o dtaw
give
mrlz—GmM—mEF = 0
¢ r2 dt
d 2'
mar(p = 0
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Equations of planetary motion

Simplify (assumingn = 0 andr # 0)

mr'2 GmM—mEF = 0
¢ r2 dt
d 2'
mar(p = 0
to get
.. .2 GM
I‘—I‘(p — —r—2
@2 = c
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Interesting aside

The equatiom'pr2 = C, gives the angular velocit(i;in terms of distance
from the sun, but also allows us to determine the velocitygdit angles to
the direction of the sun as

vr:r('p:c/r

So we can calculate the angular momentum

Da = rME= cm

which is constant (as you might expect).
The law also allows one to derive Kepler’'s second law (theoden orbit
over equal periods of time traverse equal areas).
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Solving the equations

First equation, including the conditia'm: c/r? gives

-2 GM
I‘—I‘(p — —r—2
.. C? GM
TR T T

Now instead of calculating this in terms of derivatives wiispect to

time, lets convert to derivatives with respectgddenote such derivatives
using, e.g.r’

drde -

I — apa—r(p
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Solving the equations

From the chain rule angi= c/r? we get

drde -
dodt ' ¢

BT

- d cr' -

-~ do \ r2 v
cr’”  2cr?] -

R

C2 r// 2r/2
r2 r2 r3
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Solving the equations

Substitute the above form af into the first DE and we get

. ¢ _ oM

r3 r2
c2 [r” 2r’2] ¢  GM
2|2 3 (3 (2

Once again note that# 0O, and('pyé O for all but degenerate orbits
(straight lines through the origin), so that we can multipjyr?/c? to get

v’ 2r2 1 GM
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Solving the equations

Take the substitution = p/r and then

r/
g - P
r2
/! 2 /12
y' = _pr + pr
B r2 r3

v 2r? 1 GM
2 3 r 2
u’ u B GM

P p

M
U”—I—U L Gzp

C
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Solving the equations

The equation
u +u=k

has a simple solution. The homogeneous form has the solution
u=Acoq¢p— w)
for some constantd andw and the particular solution is
u=Kk

So the final solution can be scaled to give

% =1+ecoqQ— w)

This is just the equation of a conic section.
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Possible trajectories

2k

1.5p

H ec—=0: circle 1
0.5

m0<e<l: ellipse

(0] J

B e=1: parabola

-0.5pp

H e > 1. hyperbola

-1.5p

-2k

L is the semi-latus rectum (dashed line)s the eccentricity, and gives
the angle of the perihelion (point of closest approach) Wiszero in the
above figure.
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