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Several independent variables

Consider a surface minimization problem. We have a surfaé®ithat is
a function of(x,y), e.g.z= z(x,y) thenx andy are both independent
variables.
Examples:

» minimal area surfaces

> soap films and bubbles
> for construction

» problems of the form, minimize

F{z}://gzﬁﬂédxdy
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'Extension 3: several
Independent variables

When there are several independent variables, (), and the extremal
we wish to find represents, for instance, a surfagey), andf is a
function f(x,y, z(X,y), %, z,), then the E-L equation generalizes to give

of oof oof

0z 0x0z 0yodz,
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Notation

[ 1 region

~"| — boundary

region = Q
boundary = &Q
surface = z(x,y)
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Formalisms

Q is a simply connected, bounded regionRf

0Q is the boundary of2
Q = QU3Q is the closure of
C?(Q) = {z: Q — R| zhas 2 continuous derivativps

C2(3Q) = {20 : 3Q — IR | zo has 2 continuous derivatives

// f(x,y)dxdy is an area integral of over the regiorQ
Q

7{ f(x,y) dxis a contour integral around the boundaty.
5Q
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Solution

As before we consider perturbations, though in this cageadhe
perturbations to a surface, with fixed edge, e.g.

2(x,y) =2(x,y) +en(x.y)
wheren(x,y) = 0 for all (x,y) € 0Q.

Taylor’s theorem gives

f(X,Y,z+ €N, 2+ €Ny, 4 + €Ny)
of of

il il 2
oz +nyazy +0(g9)

of
= f(x7yaZ7ZX7Zy)+8 HE—F”X
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The problem

Find extremals for the functional
F{Z} = //Q f(X7 Y> Z(va)sz7 Zy) dXdy
Analogy of fixed end points is a fixed boundary, e.g.

z(x,y) = 2o(x,y) for all (x,y) € 6Q

for some specified functiom € C?(3Q).
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The First Variation

As before we demand that at an extremal, the First Varidifom,z) =0
for all possiblen, and smalk

SF(n.7) — mF{ZJrSﬂs}—F{Z}

of of of
= /Q[”mea_zﬁ”ya_zy dxdy

We next need to do the equivalent of integration by partsitbat bit more
complicated — we need to use Green’s theorem.
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Green’s theorem

One form of Green’s theorem states

L5 5) v owv- f wex

foro Q — IR such thatp, P, @, andyy, are continuous.

This converts an area integral over a region into a line nalegyound the
boundary.
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Green’s theorem in use

Green’s theorem//Q (g—()er %—L)'/J) dxdy:/m(pdy—/mtpdx

So
of of 0 of 0 of
I, (”Xazﬁ”yazﬁ”a—xa—zﬁ”a—ya) ey

af
B aZx dy 3Q aZy

Notice thatn(x,y) = 0 for all (x,y) € 8Q, and so the right hand side
integrals are both zero.
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Green’s theorem in use

Green’stheorem//ﬂ(?—i an) dxdy = ]{(de flbdx

For instance, take

of of
¢=ng, and Y= %,

o9 _ ot 00t
ax "oz TNoxaz
a af o of

ay ~ Moz Mayag
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Given the RHS of the equation was zero, we can rearrange to get

0 of 0 of
// ( c?zxJr yazy> dxdy = // [axazx Oya] cxcy
With the result that the First Variation can be written
0 of o0 of
00~ 0[5 e s &

This step is the analogy of integration by parts in the déoveof the
standard Euler-Lagrange equation.
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Euler-Lagrange equation

Given thatF (n, z) = O for all allowablen, Lemma 2.2.2 (see last page)
can be extended directly to the 2D case, with the result that

of 9 of aaf_O

0z 0x0z, 0yodz,

This is also called the Euler-Lagrange equation.

The general case of the Euler-Lagrange equations with Derient
variables (and the boundary conditions) produces a Detdidundary
value problem.

these can be very hard to solve.
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Simple example: solution

The Euler-Lagrange equation is
of o0 df o0 of _0

0z 0x0z 0ydz,
Note that in this exampld, has no explicit dependence &yy or z, and so
we get
0%z 0%z
P oy2
This equation is calletlaplace’s equation

0

Consider the functioz = x? — y?. This satisfies Laplace’s equation, and
on the boundary? = 1—x?, soz= 2x*> — 1, which satisfies our boundary
condition.
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Simple example

Let Q be the disk defined by’ +y? < 1, and the functional of interest be

1 1
Fig = || 1+52+ 52 ooy
with boundary conditions
ZO(X7 y) = 2X2 -1

for all (x,y) such thak® +y? = 1.
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Example: vibrating string

» Imagine a taut string
> flexible
> uniform mass
> small deflections

*Emalﬂgéﬂ%ﬁf

» Equilibrium solution
> the string sits in a straight line
> consider small perturbations
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Example: vibrating string

Model:
» length of string id
position along the string is < [0, L]
constant tensiom
points on string move up/down perpendiculaxtaxis
displacement at at timet isw(x,t) < L
no friction or other damping
only force occurs to stretch string
constant densitg along the string’s length

vVvyvyvyYyvyyvyy
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Example: vibrating string

wW(x,t)

I

0 X L

» slope of stringd?

> potential energy of the string depends on how much it isdiret
from its original length_
* length at time is given by

L
) :/ 1+ w2dx
0
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Example: vibrating string

w(X,t)

T

0 X L

» end points are fixed so(0,t) =w(L,t) =0

» velocity of particle isn = %—Vtv
> kinetic energy of string

L
T:g/wtzdx
2Jo

Variational Methods & Optimal Control: lecture 11 — p.18/35

Example: vibrating string

» potential isV =1(J—L), so

L
V(t):r/o \/14+w2—1dx

» we assumed that is small, so we can approximate

1
w/1+w§:1+§w§

V(t):%/ol_wﬁdx

» SO we use
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Example: vibrating string

The system is conservative so we apply the “principle oftlaegon”

(Hamilton’s principle), which says the shape will be an ertum with
respect to

t2 t2 L
F{w} = (T—V)d:%/ / oWZ — W2 calt
t1 tl 0
The Euler-Lagrange equation is

of a9 af 9 of

which gives
La—
ox ot
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Example: Plateau’s problem

We want to find the surface with minimal area stretched betveee
boundary.

» this is what a soap film does

» architecture influenced by
minimal surfaces

> architect Frei Otto
> Munich Olympic Stadium
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Example: vibrating string

9w = 2om
ax X ot

or

0°w o 0°w

ox2 T ot2
which is the classic wave equation, which you have no douint selved
in other contexts.
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Surface area minimization

The functional of interest is the surface area

F{z}:/QdS

As before, we can’'t compute this inte- z
gral, so we must convert it to a conve-
nient form:

area = |AXB|

A = (0dzd)
B = (dx,0,zdx)
AxB = (zdxdy,zdxdy, —dxdy)

\J

dS = A xB|= /() + (2 ckely)? + (—ckely)?
= dxdy\/1+Z+Z
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Surface area minimization

So we may rewrite the functional as

F{z}:/g\/molxdy

The Euler-Lagrange equation is

of oo0f o0o0f

0z 0x0z 0ydz,

Which in this context is

9
0X

Zy

1+Z2+2
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Surface area minimization

Add the two terms above to get the E-L equation

2 — 2u(14 ) — 22220 +2,(14+ %) _

1+ 2+ 2)7 °

where we callC the mean curvature (which is 0 on the extremals).

We multiply both sides of the E-L equation by the denomin&tayet

Zu(1+2) ~ 25225+ 2y(1+2) =0

This is a hard PDE in general.
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Surface area minimization

Continuing the derivation

o x| _ Z 222+ 22)

x| [1+z2+2 1+2+2 (HE+3)P
2o(1+ Z +Z2) — 2220+ Z2x)

= (1_’_2)2(_’_232/)3/2

2u(147) — 22x
(1+Z+2)%?

i 2y(1+32) ~ 22,2

| J1+2+2 (1+2Z+2)7?
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Approximate solutions

If the surfaces are almost planes (e. i small), then we can take
squared derivateerms likezZ, zf, andzz, to be zero. In this case the
general equation

2x(1+2) — 2222x+2,(1+2) =0

simplifies to give us
Zxx+zyy — O

theLaplace equatioagain. We know from the previous example that this
is equivalent to approximating

1 1
f(Xay,ZJx’Zy) = \/m: 1+§Z§+§Z)2/

Variational Methods & Optimal Control: lecture 11 — p.28/35




Example

Design a surfaces of minimum surface area over a stadiumswitil
curved walls, of shape= scos(g%), located ak = +-a, and with no end
walls aty = +b.

= N

Variational Methods & Optimal Control: lecture 11 — p.29/35

Example: solution

So the solution is

y

z(x,y) = Acos(%> cosh(%)

DetermineA using the end-points, e.g.

ecos(%) = Acos(z—nz) cosh(z—rﬁ)

So

A:e/cosh(ﬁ)

and

2b

2xy) = scos( ) cosh{35) /osh( )
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Example
Use the approximation, so we wish to solve
Zx+zy = 0
_ ny
z(+ay) = scos(2 b)
z(x,£b) = 0

Assume a solution with separation of variables, e(8.y) = X(X)Y(y),
then the DE implies that

cosh cos
zO 7 (AY) x . (A
smh( Y) sm( )
Choose cos with = 2% to match the boundary conditions, and choose
cosh because we expect the solution to be even.
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Example: solution

N S
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Example: solution

In fact, once we realize it will have a cosine cross-sectiomknow that
the “area” of the curve for any giveawill be proportional to the height,
so we are in fact solving a problem that looks a lot like thathef
catenary. So we should be surprised to see that the resutidaame
cosh function.
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Plateau’s laws

A little bit extra:
» Soap films are made of entire smooth surfaces

» The average curvature of a portion of a soap film is alwaysteons
on any point on the same piece of soap film

» Soap films always meet in threes, and they do so at an angle of
cos 1(—1/2) = 120 degrees forming an edge called a Plateau
Border.

» Plateau Borders meet in fours at an angle of ¢6s1/3) ~ 109.47
degrees (the tetrahedral angle) to form a vertex.
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But this is hard...

Solving the PDE form of the EL equations can be very hard. \ehatwe
do to make it easier? Surely computers can help?
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