Variational Methods &
Optimal Control

lecture 11

Matthew Roughan
<mat t hew. r oughan@adel ai de. edu. au>

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Variational Methods & Optimal Control: lecture 11 — 22/



'Extension 3: several
Independent variables

When there are several independent variables, (.., and the extremal
we wish to find represents, for instance, a surtagey), andf is a
function f(Xx,y, z(X,y), %, z,), then the E-L equation generalizes to give
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Several iIndependent variables

Consider a surface minimization problem. We have a surfa@®ithat is
a function of(x,y), e.g.z= z(x,y) thenx andy are both independent

variables.

Examples:
B minimal area surfaces

m soap films and bubbles
m for construction

B problems of the form, minimize

F(g = || Z+Zody
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Notation

region
region = - .2 = boundary
boundary = 0Q
surface = z(x,y
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Formalisms

Q is a simply connected, bounded regionff

0Q is the boundary of2

Q = QUdQ is the closure of2
C2(Q) = {z: Q — R| zhas 2 continuous derivatives

C?(3Q) = {2y : dQ — IR | zy has 2 continuous derivatives

// f(x,y)dxdy is an area integral of over the regiorf2
Q

7{ f(x,y)dxis a contour integral around the boundaty.
5Q
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The problem
Find extremals for the functional
F{z} = //Q f(XY,2(X,Y),22) dxdy

Analogy of fixed end points is a fixed boundary, e.g.
2(x,y) = 20(x.y) for all (x,y) € 50

for some specified functiom € C?(3Q).
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Solution

As before we consider perturbations, though in this casedhe
perturbations to a surface, with fixed edge, e.g.

2(x,y) = Z(X,y) +€en(x.y)
wheren(x,y) = 0 for all (x,y) € 8Q.

Taylor’s theorem gives

f(X,y,z+€n, 2.+ &Ny, 2, + €Ny)
of of of

— f(X,y,Z,ZX,Zy>—|—8 HE_FHXO_ZX_'_HYE +O(82)
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The First Variation

As before we demand that at an extremal, the First Variaitom,z) = 0
for all possiblen, and smalk

Fzven) Rz

0F(n,z) = Ilim

e—0

N //[ azx+”yngy xcly

We next need to do the equivalent of integration by partsitbat bit more
complicated — we need to use Green’s theorem.
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Green’s theorem

One form of Green’s theorem states

(Gt 5y) dev= oty we

for @, : Q — IR such thatp, Y, @ andy, are continuous.

This converts an area integral over a region into a line nadesyound the
boundary.
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Green’s theorem In use

Greenstheorem//( ?;5) dxady = 74 (pady — 7{ ) dx

For instance, take

= ﬂ and = ﬁ
a_cp B of 0 of
ox ”Xazx ”axazx
oy of 0 of

oy Waz, oy oz,
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Green’s theorem In use

Greenstheorem//( ?;5) dxady = /cpdy /L|JdX

So

of of 0 Of 0 Of
//Q<”Xa_+”yazy Moxoz r]Oyazy) xcly

of of
= nazxdy Qna—zydx

Notice thatn(x,y) = O for all (x,y) € 8Q, and so the right hand side
Integrals are both zero.
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Given the RHS of the equation was zero, we can rearrange to get

0 oOf 0 of
. (”Xazx+”yazy> deay=— | n [axa—zﬁa—ya] axcy
With the result that the First Variation can be written
0 Of 0 Of
F(n.2) //ﬂ [az axazx_@a_zy] axcy

This step is the analogy of integration by parts in the déoweof the
standard Euler-Lagrange equation.
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Euler-Lagrange equation

Given thatF (n,z) = O for all allowablen, Lemma 2.2.2 (see last page)
can be extended directly to the 2D case, with the result that

of o0of 9 af
0z O0x0z 0yodz,

0

This is also called the Euler-Lagrange equation.

The general case of the Euler-Lagrange equations with armbent
variables (and the boundary conditions) produces a Detdbwundary

value problem.
these can be very hard to solve.
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Simple example

Let Q be the disk defined by’ +y? < 1, and the functional of interest be

F{z} — //Ql%z%%zﬁ dkaly

with boundary conditions
ZO(X7 y) — 2X2 —1

for all (x,y) such thak?+y? = 1.
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Simple example: solution

The Euler-Lagrange equation is

of _00of oot

0z 0x0z Oydz

Note that in this exampld, has no explicit dependence gyy or z, and so

we get
) 0%z 0%z

o2 " ay?
This equation is calletlaplace’s equation

0

Consider the functiom = x? — y°. This satisfies Laplace’s equation, and
on the boundary? = 1— x?, soz= 2x?> — 1, which satisfies our boundary
condition.
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Example: vibrating string

B Imagine a taut string
m flexible
B uniform mass
® small deflections

il

il

I

*mlana!srsd W

!
a1 ! B
Ji 4

m Equilibrium solution
M the string sits in a straight line
B consider small perturbations
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Example: vibrating string

Model:
B |ength of string id-
B position along the string is€ |0, L]
B constant tension
B points on string move up/down perpendiculaxtaxis
B displacement at at timet isw(x,t) < L
Hm no friction or other damping
B only force occurs to stretch string
B constant density along the string’s length
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Example: vibrating string

W(X,t)

T~
: o~

m end points are fixed s@(0,t) =w(L,t) =0

m velocity of particle isw = 2

B kinetic energy of string

L
T:9/vvt2dx
2 Jo
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Example: vibrating string

W(X,t)

O ’ \/L
m slope of string}?

B potential energy of the string depends on how much it isdtret
from its original length_
length at timd Is given by

L
Jm:/ 1+ w2dx
0
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Example: vibrating string

W potential isvV =1(J—L), so

L
V(t):T/O 14+ w2 — 1k

B we assumed that is small, so we can approximate

1
\/1+W§:1+§W§

V(t):%/OLwidx

B SO we use
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Example: vibrating string

The system is conservative so we apply the “principle oftlaagon”
(Hamilton’s principle), which says the shape will be an ertum with
respect to

Fawy = [ (T-V)d /ovvz w2 it

t

The Euler-Lagrange equation is

of o of o0 of

oW  OXOw, Otow 0
which gives
iTw 2cyw
ox X ot
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Example: vibrating string

3'l'W—QCIW
ox < ot

or
0w o 0°w
0x2 T Ot2
which is the classic wave equation, which you have no doudat selved
In other contexts.
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Example: Plateau’s problem

We want to find the surface with minimal area stretched batveee
boundary.

B this is what a soap film does

B architecture influenced by
minimal surfaces
m architect Frei Otto

® Munich Olympic Stadium
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Surface area minimization

The functional of interest is the surface area
F{z) — / ds
Q

As before, we can’t compute this inte- z
gral, so we must convert it to a conve-
nient form:

A = (0,dy,zdy)

B — (k0,2 | A
AxB = (z.xdy,z dxdy,—dxdy)

area = |AxBI

dS = |AxB| =/ (zkey)® + (z,0Kay)? + (—cay)?
=y /[1+B+Z
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Surface area minimization

So we may rewrite the functional as

F{z}://Q\/1+z§+z§dxdy

The Euler-Lagrange equation is

of 00of oot

0z X 0z, 0yo0z

Which in this context is

2
X \J1+g+g] Y\ 1+2+F
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Surface area minimization

Continuing the derivation

0

Zy

16)4

\14+Z+5

Zyx B Z(ZZx + ZyZyx)
Tiraig (+EE
21+ 2+ 2y) — 2232+ 2y 2%)

1+ 2+ 57

Zo(142)) — 222
(1+Z+23)%2

Zyy(1+2) — 222
(1+Z+23)%2
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Surface area minimization

Add the two terms above to get the E-L equation

o — 2(1+7)) — 22220+ 2y(1+Z) 0
B (1+Z2+25)3/2 B

where we callC the mean curvature (which is 0 on the extremals).

We multiply both sides of the E-L equation by the denomin&taget

2o(1+2)) — 222,2x+ 2y (1+7) = 0

This is a hard PDE in general.
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Approximate solutions

If the surfaces are almost planes (e.g i small), then we can take
squared derivatierms likez, z; andz,z, to be zero. In this case the
general equation

Zo(1+ 7)) — 22225+ 2y(1+ Z,) =
simplifies to give us
Zx + 2y =0

the Laplace equatioagain. We know from the previous example that this
IS equivalent to approximating

f(XY.220%) = /14 B+ ~ 1+ z§+ z§
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Example

Design a surfaces of minimum surface area over a stadiumsmiil
curved walls, of shape= scos(g%), located ak = +a, and with no end
walls aty = +b.

\Q\ »x
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Example

Use the approximation, so we wish to solve

Zx+2y = O
Z(+ay) = ecos(g%)
Z(x,tb) = O

Assume a solution with separation of variables, &(g.y) = X(X)Y(y),
then the DE implies that

cosh

z [ Sinh(?\w (>\y>

Choose cos witih = 5 to match the boundary conditions, and choose
cosh because we expect the solution to be even.
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Example: solution

So the solution is

Z(X,y) = Acos( ;?3/) cosh( 2;()

DetermineA using the end-points, e.g.

cos( 1) = ros( ) cos( )

2b 2b 2b
So
T
=€/ cosh( Zb)
and

2(x,y) = 8005(2%/) COS“@;) / COSh(gS)
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Example: solution
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Example: solution

In fact, once we realize it will have a cosine cross-sectiamknow that
the “area” of the curve for any givenwill be proportional to the height,
so we are in fact solving a problem that looks a lot like thathef
catenary. So we should be surprised to see that the resuhdigame

cosh function.
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But this Is hard...

Solving the PDE form of the EL equations can be very hard. \V&hatwe
do to make it easier? Surely computers can help?
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Plateau’s laws

A little bit extra:
B Soap films are made of entire smooth surfaces

B The average curvature of a portion of a soap film is alwaystenns
on any point on the same piece of soap film

B Soap films always meet in threes, and they do so at an angle of

cos 1(—1/2) = 120 degrees forming an edge called a Plateau
Border.

B Plateau Borders meet in fours at an angle of ¢6s1/3) ~ 109.47
degrees (the tetrahedral angle) to form a vertex.
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