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Numerical Solutions
The E-L equations may be hard to solve

Natural response is to find numerical methods

◮ Numerical solution of E-L DE
⊲ we won’t consider these here (see other courses)

◮ Euler’s finite difference method

◮ Ritz (Rayleigh-Ritz)
⊲ In 2D: Kantorovich’s method
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Euler’s finite difference
method

We can approximate our function (and hence the integral) onto a finite
grid. In this case, the problem reduces to a standard multivariable
maximization (or minimization) problem, and we find the solution by
setting the derivatives to zero. In the limit as the grid getsfiner, this
approximates the E-L equations.
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Numerical Approximation

Numerical approximation of integrals:

◮ use an arbitrary set of mesh pointsa = x0 < x1 < x2 < · · ·< xn = b.

◮ approximate

y′(xi) =
yi+1− yi

xi+1− xi
=

∆yi

∆xi

◮ rectangle rule

F{y}=
∫ b

a
f (x,y,y′)dx ≃

n−1

∑
i=0

f

(

xi,yi,
∆yi

∆xi

)

∆xi = F̄(y)

F̄(·) is a function of the vectory = (y1,y2, . . . ,yn).
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Finite Difference Method (FDM)

Treat this as a maximization of a function ofn variables, so that we require

∂F̄
∂yi

= 0

for all i = 1,2, . . . ,n.

Typically use uniform grid so∆xi = ∆x = (b−a)/n.
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Simple Example

Find extremals for

F{y}=
∫ 1

0

[

1
2

y′2+
1
2

y2− y

]

dx

with y(0) = 0 andy(1) = 0.

E-L equationsy′′− y = 1.
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Simple Example: direct solution

E-L equationsy′′− y =−1
Solution to homogeneous equationsy′′− y = 0 is given byeλx giving
characteristic equationλ2−1= 0, soλ =±1.
Particular solutiony = 1
Final solution is

y(x) = Aex +Be−x +1

The boundary conditionsy(0) = y(1) = 0 constrainA+B =−1 and

Ae+Be−1 =−1, soAe+(1−A)e−1 = 1, soA = e−1−1
e−e−1 andB = 1−e

e−e−1 .
Then the exact solution to the extremal problem is

y(x) =
e−1−1
e− e−1

ex +
1− e

e− e−1
e−x −1
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Simple Example: Euler’s FDM

Find extremals for

F{y}=
∫ 1

0

[

1
2

y′2+
1
2

y2− y

]

dx

Euler’s FDM.

◮ Take the gridxi = i/n, for i = 0,1, . . . ,n so
⊲ end pointsy0 = 0 andyn = 0
⊲ ∆x = 1/n
⊲ ∆yi = yi+1− yi

◮ So
⊲ y′i = ∆yi/∆x = n(yi+1− yi)

⊲ and
y′2i = n2

(

y2
i −2yiyi+1+ y2

i+1

)
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Simple Example: Euler’s FDM

Find extremals for

F{y}=
∫ 1

0

[

1
2

y′2+
1
2

y2− y

]

dx

Its FDM approximation is

F̄(y) =
n−1

∑
i=0

f (xi,yi,y
′
i)∆x

=
n−1

∑
i=0

1
2

n2
(

y2
i −2yiyi+1+ y2

i+1

)

∆x+(y2
i /2− yi)∆x

=
n−1

∑
i=0

1
2

n
(

y2
i −2yiyi+1+ y2

i+1

)

+
y2

i /2− yi

n
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Simple Example: end-conditions

◮ We know the end conditionsy(0) = y(1) = 0, which imply that

y0 = yn = 0

◮ Include them into the objective using Lagrange multipliers

H̄(y) =
n−1

∑
i=0

1
2

n
(

y2
i −2yiyi+1+ y2

i+1

)

+
y2

i /2− yi

n
+λ0y0+λnyn
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Simple Example: Euler’s FDM

Taking derivatives, note thatyi only appears in two terms of the FDM
approximation

H̄(y) =
n−1

∑
i=0

1
2

n
(

y2
i −2yiyi+1+ y2

i+1

)

+
y2

i /2− yi

n
+λ0y0+λnyn

∂H̄(y)
∂yi

=











n(y0− y1)+
y0−1

n +λ0 for i = 0

n(2yi − yi+1− yi−1)+
yi

n − 1
n for i = 1, . . . ,n−1

n(yn − yn−1)+λn for i = n

We need to set the derivatives to all be zero, so we now haven+3 linear
equations, includingy0 = yn = 0, andn+3 variables including the two
Lagrange multipliers. We can solve this system numericallyusing, e.g.,
matlab.
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Simple Example: Euler’s FDM

Example:n = 4, solve
Az = b

where

A =































−4.00

8.25 −4.00 −4.00

−4.00 8.25 −4.00

−4.00 8.25 −4.00

−4.00 8.25 −4.00

−4.00 8.25 −4.00

−4.00































and b =































0.00

0.25

0.25

0.25

0.25

0.00

0.00































◮ first n+1 terms ofz give y

◮ last two terms given the Lagrange multipliers
λ0 andλn
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Simple example: results

0 0.5 1
0
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0.1
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x

f(x)

n = 2
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Convergence of Euler’s FDM

F̄(y) =
n−1

∑
i=0

f

(

xi,yi,
∆yi

∆x

)

∆x and ∆yi = yi+1− yi

Only and two terms in the sum involveyi, so

∂F̄
∂yi

=
∂

∂yi
f

(

xi−1,yi−1,
∆yi−1

∆x

)

+
∂

∂yi
f

(

xi,yi,
∆yi

∆x

)

=
1

∆x
∂ f
∂y′i

(

xi−1,yi−1,
∆yi−1

∆x

)

+
∂ f
∂yi

(

xi,yi,
∆yi

∆x

)

−
1

∆x
∂ f
∂y′i

(

xi,yi,
∆yi

∆x

)

=
∂ f
∂yi

(xi,yi,y
′
i)−

∂ f
∂y′i

(

xi,yi,
∆yi

∆x

)

− ∂ f
∂y′i

(

xi−1,yi−1,
∆yi−1

∆x

)

∆x
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Convergence of Euler’s FDM

The condition for a stationary point becomes

∂F̄
∂yi

=
∂ f
∂yi

(xi,yi,y
′
i)−

∂ f
∂y′i

(

xi,yi,
∆yi

∆x

)

− ∂ f
∂y′i

(

xi−1,yi−1,
∆yi−1

∆x

)

∆x
= 0

In limit n → ∞, then∆x → 0, and so we get

∂ f
∂y

−
d
dx

(

∂ f
∂y′

)

= 0

which are the Euler-Lagrange equations.

◮ i.e., the finite difference solution converges to the solution of the
E-L equations
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Comments

◮ There are lots of ways to improve Euler’s FDM
⊲ use a better method of numerical quadrature (integration)

⋆ trapezoidal rule
⋆ Simpson’s rule
⋆ Romberg’s method

⊲ use a non-uniform grid
⋆ make it finer where there is more variation

◮ We can use a different approach that can be even better
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Ritz’s method
In Ritz’s method (called Kantorovich’s methods where thereis more than
one independent variable), we approximate our functions (the extremal in
particular) using a family of simple functions. Again we canreduce the
problem into a standard multivariable maximization problem, but now we
seek coefficients for our approximation.
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Ritz’s method

Assume we can approximatey(x) by

y(x) = φ0(x)+ c1φ1(x)+ c2φ2(x)+ · · ·+ cnφn(x)

where we choose a convenient set of functionsφ j(x) and find the values of
c j which produce an extremal.

For fixed end-point problem:

◮ Chooseφ0(x) to satisfy the end conditions.

◮ Thenφ j(x0) = φ j(x1) = 0 for j = 1,2, . . . ,n

Theφ can be chosen from standard sets of functions, e.g. power series,
trigonometric functions, Bessel functions, etc. (but mustbe linearly
independent)
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Ritz’s method

◮ select{φ j}
n
j=0

◮ Approximateyn(x) = φ0(x)+ c1φ1(x)+ c2φ2(x)+ · · ·+ cnφn(x)

◮ ApproximateF{y} ≃ F{yn}=

∫ x1

x0

f (x,yn,y
′
n)dx

◮ Integrate to getF{yn}= Fn(c1,c2, . . . ,cn)

◮ Fn is a known function ofn variables, so we can maximize (or
minimize) it as usual by

∂Fn

∂ci
= 0

for all i = 1,2, . . . ,n.
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Upper bounds

Assume the extremal of interest is a minimum, then for the extremal

F{y}< F{ŷ}

for all ŷ within the neighborhood ofy. Assume our approximating
functionyn is close enough to be in that neighborhood, then

F{y} ≤ F{yn}= Fn(c)

so the approximation provides anupper bound on the minimumF{y}.
Another way to think about it is that we optimize on a smaller set of
possible functionsy, so we can’t get quite as good a minimum.
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Simple Example

Find extremals for

F{y}=
∫ 1

0

[

1
2

y′2+
1
2

y2− y

]

dx

with y(0) = 0 andy(1) = 0.

E-L equationsy′′− y = 1, but we shall bypass the E-L equations to use
Ritz’s method.

yn(x) = φ0(x)+
n

∑
i=1

ciφi(x)

where we takeφ0(x) = 0 andφi(x) = xi(1− x)i.

Variational Methods & Optimal Control: lecture 12 – p.21/27

Simple Example

Simple approximationy1 = c1φ1(x) we get

F1(c1) = F{y1}=

∫ 1

0

[

1
2

c2
1φ′2

1 + c2
1
1
2

φ2
1− c1φ1

]

dx

Now φ(x) = x(1− x) soφ′
1 = 1−2x, and

F1(c1) =

∫ 1

0

[

c2
1

2
(1−2x)2+

c2
1

2
x2(1− x)2− c1x(1− x)

]

dx

=
c2

1

2

∫ 1

0

[

1−4x+5x2− x4
]

dx+ c1

∫ 1

0

[

−x+ x2
]

dx

=
c2

1

2

[

x−2x2+5x3/3− x5/5
]1

0+ c1
[

−x2/2+ x3/3
]1

0

=
c2

1

2
11
30

−
c1

6
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Simple Example

We solve forc1 by setting
dF1

dc1
=

11c1

30
−

1
6
= 0

to getc1 = 5/11, so the approximate extremal is

y1(x) =
5
11

x(1− x)

The value of the approximate functional at this point is

F1(5/11) =
c2

1

2
11
30

−
c1

6
=−0.37879

which is an upper bound on the true value of the functional on the
extremal.
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Simple example: results

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

exact
y

1
 = c

1
 x(1−x)
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Alternate approach

Chooseφ1(x) = sin(πx) (use the first element of a trigonometric series to
approximatey). Then,φ′(x) = πcos(πx), and so the functional is

F1(c1) = F{c1φ1}=
∫ 1

0

[

1
2

c2
1φ′2

1 + c2
1
1
2

φ2
1− c1φ1

]

dx

=
∫ 1

0

[

c2
1π2

2
cos2(πx)+

c2
1

2
sin2(πx)− c1sin(πx)

]

dx

Now
∫ 1

0 cos2(πx) =
∫ 1

0 sin2(πx) = 1/2,

and
∫ 1

0 sin(πx) = [− 1
π cos(πx)]10 =−2/π, so

F(c1) =
c2

1

2
1
2

[

π2+1
]

−
2
π

c1
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Alternate approach

Once again we solve forc1 by setting

dF1

dc1
= c1

1
2

[

π2+1
]

−
2
π
= 0

to getc1 =
4

π(π2+1) , so the approximate extremal is

y1(x) =
4

π(π2+1)
sin(πx)
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example: alternative results

0 0.2 0.4 0.6 0.8 1
0

0.02
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1
 = c

1
 sin(π x)
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