
Variational Methods &
Optimal Control

lecture 13

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics
School of Mathematical Sciences

University of Adelaide

April 14, 2016

Variational Methods & Optimal Control: lecture 13 – p.1/22

Numerical solutions
(continued)

Ritz applied to the catenary gives additional insights and Kantorovich’s
method generalizes Ritz to 2D functions..

Variational Methods & Optimal Control: lecture 13 – p.2/22

Example: the Catenary, again

The functional of interest (the potential energy) is

Wp{y}= mg
∫ x1

x0

y
√

1+ y′2dx

Take symmetric problem with fixed end points

y(−1) = a andy(1) = a

and we know the solution looks like

y(x) = c1cosh

(

x
c1

)

wherec1 is chosen to match the end points.
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Example: the Catenary, again

y(1) = 2 givesc1 = 0.47 orc1 = 1.697

◮ are they both local minima?
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Ritz and the Catenary

Lets try approximating the curve by a polynomial

y(x) = a0+a1x+a2x2+a3x3+a4x4+ · · ·

Note that symmetry of problem impliesy is an even function, and hence
the odd termsa1 = a3 = · · ·= 0. So, to second order we can approximate

y(x)≃ a0+a2x2

We have fixedy(1) = y1, so we can simplify to get

y(x)≃ a0+(y1−a0)x
2
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Ritz and the Catenary

y ≃ a0+(y1−a0)x
2

y′ ≃ 2(y1−a0)x

We can substitute into the functional

Wp{y}= mg
∫ x1

x0

y
√

1+ y′2dx

and integrate to get a functionWp(a1) with respect toa0.

But this function is pretty complicated
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Ritz and the Catenary

From Maple

Wp(a0) = −1/4a0(−8
√

π(4−4a0+a0
2)+(−4 ln(2)−1− ln(4−4a0+a0

2))
√

π

−√
π(4−4a0+a0

2)(−(4−4a0+a0
2)−1−8)

−8
√

π(4−4a0+a0
2)sqrt(1+(16−16a0+4a0

2)−1)

−1/16
√

π(128−128a0+32a0
2) ln(1/2+1/2sqrt(1+(16−16a0+4a0

2)−1))
4−4a0+a0

2 )(
√

π)−1(sqrt(4−4a0+a0
2))−1

−1/16(2−a0)(−16
√

π(4−4a0+a0
2)2−4

√
π(4−4a0+a0

2)

−1/4(1/2−4 ln(2)− ln(4−4a0+a0
2))

√
π

+2
√

π(4−4a0+a0
2)2(1/16(4−4a0+a0

2)−2+2(4−4a0+a0
2)−1+8)

+2
√

π(4−4a0+a0
2)2(−(4−4a0+a0

2)−1−8)sqrt(1+(16−16a0+4a0
2)−1)

+1/32
√

π(64−64a0+16a0
2) ln(1/2+1/2sqrt(1+(16−16a0+4a0

2)−1))

4−4a0+a0
2 )(4−4a0+a0

2)−3/2√π−1

Its a pain to find the zeros ofdW/da0, but its easy to plot, and find them
numerically.
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Ritz and the Catenary

Its a function, and I can plot it, or use simple numerical techniques to find
its stationary points.

c
0.0 0.5 1.0 1.5 2.0

3.9

4.0

4.1

4.2

4.3

Variational Methods & Optimal Control: lecture 13 – p.8/22



Ritz and the Catenary

Stationary points

◮ local max:a0 ≃ 0.41

◮ local min: a0 ≃ 1.69
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Ritz and the Catenary

Doesn’t just give us an approximation to the extremal curves, its also
gives us some insight into the nature of these extremals. If

◮ approximations are near to the actual extrema

◮ There are no other extrema so close by

◮ The functional is smooth (it can’t have jumps either)

Then the type of extrema we get for the approximation will be the same
for the real extrema, i.e.,

◮ local max:a0 ≃ 0.41⇒ local max forc1 = 0.47

◮ local min: a0 ≃ 1.69⇒ local min forc1 = 1.697
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More than one indep. var

2D case: we are approximating a surface with series of functions, e.g.

z(x,y)≃ zn(x,y) = φ0(x,y)+
n

∑
i=1

ciφi(x,y)

whereφ0(x,y) satisfies the boundary conditions, e.g.φ0(x,y) = z0(x,y) for
(x,y) ∈ δΩ, the boundary of the region on interestΩ, and theφi(x,y)
satisfy the homogeneous boundary conditionsφi(x,y) = 0 for (x,y) ∈ δΩ.
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More than one indep. var

As before, we approximate the functional by

F{z} ≃ F{zn}= Fn(c1, . . . ,cn)

As before we determine thec j by requiring that the partial derivatives are
zero, e.g.

∂Fn

∂ci
= 0

for all i = 1,2, . . . ,n
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Kantorovich’s method

Approximate with

z(x,y)≃ zn(x,y) = φ0(x,y)+
n

∑
i=1

ci(x)φi(x,y)

Again theφi are suitably chosen, but theci are no longer constants, but
rather functions of one independent variable. This allows alarger class of
functions to be used.
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Kantorovich’s method

Note that the integral function

F{zn}=
∫∫

Ω
zn(x,y)dxdy =

n

∑
i=0

∫
ci(x)

[∫ y1(x)

y0(x)
φi(x,y)dy

]

dx

We integrate the inner integral, and get

F{zn}=
n

∑
i=0

∫
ci(x)Φi(x)dx

Now we just have a function ofx, and so we may apply the
Euler-Lagrange machinery.

The method approx. separates the variablesx andy.

Variational Methods & Optimal Control: lecture 13 – p.14/22

Example

Find the extremals of

F{z(x,y)}=
∫ b

−b

∫ a

−a

(

z2
x + z2

y −2z
)

dxdy

with z = 0 on the boundary.

The Euler-Lagrange equation reduces to the Poisson equation, e.g.

d
dx

∂ f
∂zx

+
d
dx

∂ f
∂zx

=
∂ f
∂z

d
dx

2zx +
d
dx

2zy = −2

∇2z(x,y) = −1
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Example

Approximate

z1(x,y) = c(x)(b2− y2)

Notez1(x,±b) = 0 (as required) and

(

∂z1

∂x

)2

=
(

c′(x)(b2− y2)
)2

= c′(x)2(b4−2b2y2+ y4)
(

∂z1

∂y

)2

= (c(x)2y)2

= 4c(x)2y2
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Example

Hence, we approximate

F{z(x,y)} ≃ F{z1(x,y)}

=
∫ b

−b

∫ a

−a

(

z2
x + z2

y −2z
)

dxdy

=

∫ a

−a

[∫ b

−b

[

c′(x)2(b2− y2)2+4c(x)2y2−2c(x)(b2− y2)
]

dy

]

dx

=

∫ a

−a

[

c′(x)2(b4y−2b2y3/3+ y5/5)+4c(x)2y3/3−

2c(x)(b2y− y3/3)
]b

−b
dx

=
∫ a

−a

[

16
15

b5c′(x)2+
8
3

b3c(x)2− 8
3

b3c(x)

]

dx
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Example

So we can write

F{z(x,y)} ≃ F{z1(x,y)}= F{c(x)}=
∫ a

−a
f (x,c,c′)dx

We can use the simple Euler-Lagrange equations, where

f (x,c,c′) =
16
15

b5c′(x)2+
8
3

b3c(x)2− 8
3

b3c(x)

∂ f
∂c

=
16
3

b3c(x)− 8
3

b3

∂ f
∂c′

=
32
15

b5c′(x)

d
dx

∂ f
∂c′

=
32
15

b5c′′(x)
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Example

Euler-Lagrange equations

d
dx

∂ f
∂c′

− ∂ f
∂c

= 0

32
15

b5c′′(x)− 16
3

b3c(x)+
8
3

b3 = 0

c′′(x)− 5
2b2

c(x) = − 5
4b2

Solutions

c(x) = k1cosh

(
√

5
2

x
b

)

+ k2sinh

(
√

5
2

x
b

)

+
1
2
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Example

Note that the function must be zero on the boundary soz(±a,y) = 0, and
so we look for an even functionc(x), and sok2 = 0, and alsoc(±a) = 0,
so

c(a) = k1cosh

(
√

5
2

a
b

)

+
1
2

−1
2

= k1cosh

(
√

5
2

a
b

)

k1 = − 1

2cosh
(
√

5
2

a
b

)
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Example

Solution

z1(x,y) =
1
2
(b2− y2)






1−

cosh
(
√

5
2

x
b

)

cosh
(
√

5
2

a
b

)







If we wanted a more exact approximation, we could try

z2(x,y) = (b2− y2)c1(x)+(b2− y2)2c2(x)
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Lower bounds

◮ Obviously, quality of solution depends on
⊲ family of functions chosen
⊲ number of terms used,n

◮ Could test convergence by increasingn and seeing the difference in
|F{yn+1}−F{yn}|, but this is not guaranteed to be a good
indication.

◮ A better way to assess convergence is to have a lower-bound

lower bound≤ F{y} ≤ upper bound

◮ usecomplementary variation principle

◮ but its a bit complicated for us to cover here.
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