Variational Methods & Optimal Control

lecture 15

Matthew Roughan <matthew.roughan@adelaide.edu.au>

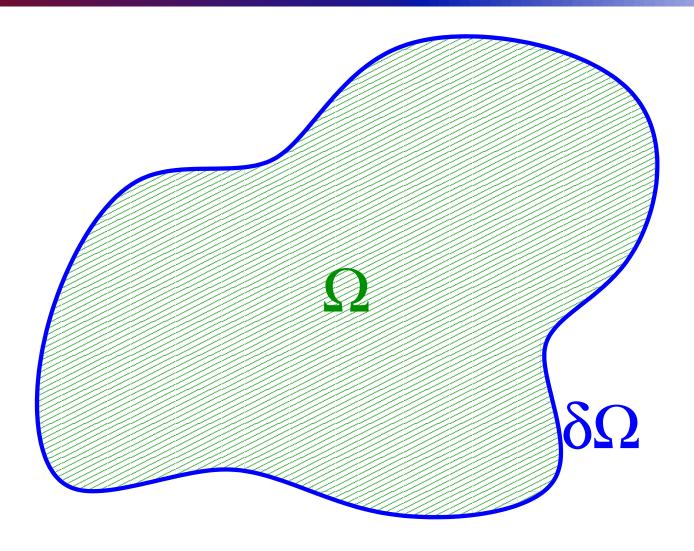
Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

April 14, 2016

Isoperimetric constraints (continued)

We solve the more general case of Dido's problem: a general shape, without a coast, so that the perimeter must be parametrically described.

Isoperimetric problems



Dido's problem - traditional

Dido's problem is usually posed as follow

Find the curve of length L which encloses the largest possible area, i.e. maximize

$$Area = \iint_{\Omega} 1 \, dx \, dy$$

subject to the constraint

$$\oint_{\partial\Omega} 1 \, ds = L$$

Of course the problem is not yet in a convenient form.

Green's theorem

Green's theorem converts an integral over the area Ω to a contour integral around the boundary $\delta\Omega$.

$$\iint_{\Omega} \left(\frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y} \right) dx dy = \oint_{\partial \Omega} \phi dy - \psi dx$$

for $\phi, \psi : \bar{\Omega} \to IR$ such that ϕ, ψ, ϕ_x and ψ_y are continuous.

This converts an area integral over a region into a line integral around the boundary.

Geometric representation of area

The area of a region is given by

Area =
$$\iint_{\Omega} 1 \, dx \, dy$$

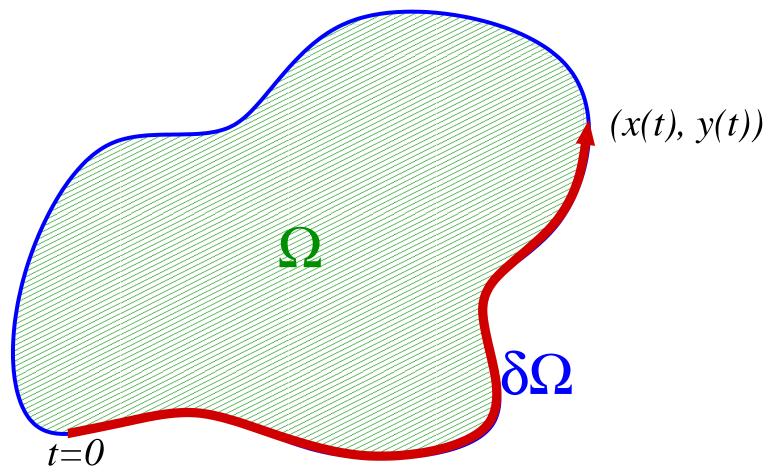
In Green's theorem choose $\phi = x/2$ and $\psi = y/2$, so that we get

Area =
$$\iint_{\Omega} 1 \, dx \, dy = \frac{1}{2} \oint_{\partial \Omega} x \, dy - y \, dx$$

Previous approach to Dido, was to use y = y(x), but in more general case where the boundary must be closed, we can't define y as a function of x (or visa versa). So we write the boundary curve parametrically as (x(t), y(t)).

Parametric description of boundary

Boundary $\delta\Omega$ represented parametrically by (x(t), y(t))



Dido's problem

If the boundary $\delta\Omega$ is represented parametrically by (x(t), y(t)) then

Area =
$$\iint_{\Omega} 1 \, dx \, dy$$
=
$$\frac{1}{2} \oint_{\delta\Omega} x \, dy - y \, dx$$
=
$$\frac{1}{2} \oint_{\delta\Omega} x \dot{y} - y \dot{x} \, dt$$

So now the problem is written in terms of

one independent variable
$$= t$$

two dependent variables $= (x, y)$

Isoperimetric constraint

Previously we wrote the isoperimetric constraint as

$$G\{y\} = \int 1 ds = \int_{x_0}^{x_1} \sqrt{1 + y'^2} \, dx = L$$

but now we must also modify this using

$$\frac{ds}{dt} = \sqrt{\frac{dx^2}{dt} + \frac{dy^2}{dt}}$$

to get

$$G\{x,y\} = \oint 1 ds = \oint \sqrt{\dot{x}^2 + \dot{y}^2} dt = L$$

Dido's problem: Lagrange multiplier

Hence, we look for extremals of

$$H\{x,y\} = \oint \frac{1}{2} \left(x\dot{y} - y\dot{x} \right) + \lambda \sqrt{\dot{x}^2 + \dot{y}^2} dt$$

So $h(t, x, y, \dot{x}, \dot{y}) = \frac{1}{2} (x\dot{y} - y\dot{x}) + \lambda \sqrt{\dot{x}^2 + \dot{y}^2}$, and there are two dependent variables, with derivatives

$$\frac{\partial h}{\partial x} = \frac{1}{2}\dot{y} \qquad \frac{\partial h}{\partial \dot{x}} = -\frac{1}{2}y + \frac{\lambda\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}}$$

$$\frac{\partial h}{\partial y} = -\frac{1}{2}\dot{x} \qquad \frac{\partial h}{\partial \dot{y}} = \frac{1}{2}x + \frac{\lambda\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}}$$

Dido's problem: EL equations

Leading to the 2 Euler-Lagrange equations

$$\frac{d}{dt} \left[-\frac{1}{2}y + \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right] = \frac{1}{2} \dot{y}$$

$$\frac{d}{dt} \left[\frac{1}{2} x + \frac{\lambda \dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right] = -\frac{1}{2} \dot{x}$$

Integrate

$$-\frac{1}{2}y + \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = \frac{1}{2}y + A$$

$$\frac{1}{2}x + \frac{\lambda \dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = -\frac{1}{2}x - B$$

Dido's problem: solution

$$\frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = y + A$$

$$\frac{\lambda \dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = -x - B$$

Now square the two, and add them to get

$$\lambda^{2} \frac{\dot{x}^{2} + \dot{y}^{2}}{\dot{x}^{2} + \dot{y}^{2}} = (y + A)^{2} + (x + B)^{2}$$

or, more simply $(y+A)^2 + (x+B)^2 = \lambda^2$, the equation of a circle with center (-A, -B), radius $|\lambda|$

End-conditions

Note, we can't set value at end points arbitrarily.

- if $x(t_0) = x(t_1)$, and $y(t_0) = y(t_1)$, then we get a closed curve, obviously a circle.
 - \blacksquare these conditions only amount to setting one constant, λ
 - there are many valid circles through (x_0, y_0) , with centered along a circle of radius $|\lambda|$ about (x_0, y_0) .
- on the other hand, if we specify different end-points, we are really solving a problem such as the simplified problem considered last week.

Why does the Lagrange multiplier approach work here?

Consider Euler's finite difference method on a uniform grid for approximation of the functional

$$F\{y\} = \int_{a}^{b} f(x, y, y') dx \simeq \sum_{i=1}^{n} f\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) \Delta x = \bar{F}(\mathbf{y})$$

where $\Delta x = (b-a)/n$, and $\Delta y_i = y_i - y_{i-1}$. The problem of finding an extremal curve now becomes one of finding stationary points of the function $\bar{F}(y_1, y_2, \dots, y_n)$.

we solve this by looking for $\partial \bar{F}/\partial y_i = 0$ for all i = 1, 2, ..., n.

The constraint can be likewise approximated to give

$$G\{y\} \simeq \sum_{i=1}^{n} g\left(x_i, y_i, \frac{\Delta y_i}{\Delta x}\right) \Delta x = \bar{G}(\mathbf{y}) = L$$

Under our usual conditions on F and G, the limit as $n \to \infty$ gives

$$ar{F}(\mathbf{y}) \rightarrow F\{y\}$$
 $ar{G}(\mathbf{y}) \rightarrow G\{y\}$

That is, the **functions** of the approximation **y** converge to the **functionals** of the curve y(x).

In the finite dimensional case the constraint is

$$\bar{G}(y_1, y_2, \dots, y_n) - L = 0$$

we use a standard Lagrange multiplier

$$\bar{H}(y_1, y_2, \dots, y_n, \lambda) = \bar{F}(y_1, y_2, \dots, y_n) + \lambda \left[\bar{G}(y_1, y_2, \dots, y_n) - L\right]$$

we solve this by looking for

$$\frac{\partial \bar{H}}{\partial y_i} = 0, \ \forall i = 1, 2, \dots, n, \quad \text{and} \quad \frac{\partial \bar{H}}{\partial \lambda} = 0$$

last equation just gives you back your constraint

In our formulation of the isoperimetric problem we take

$$H\{y\} = F\{y\} + \lambda G\{y\}$$

and we also have

$$ar{H}(\mathbf{y},\lambda) = ar{F}(\mathbf{y}) + \lambda \left[ar{G}(\mathbf{y}) - L
ight]$$

In the limit as $n \to \infty$ we find that

$$\bar{H}(\mathbf{y},\lambda) \to H\{y\} - \lambda L$$

The E-L equations for $H\{y\} - \lambda L$ and $H\{y\}$ are the same, so they have the same extremals!

See van Brunt, pp.83–87 for a more rigorous explanation of Lagrange multipliers in this context.

Multiple constraints

We can also handle multiple constraints via multiple Lagrange multipliers. For instance, given we wish to find extremals of

$$F\{y\} = \int_{x_0}^{x_1} f(x, y, y') \, dx$$

with the *m* constraints

$$G_k\{y\} = \int_{x_0}^{x_1} g_k(x, y, y') dx = L_k$$

we would look for extremals of

$$H\{y\} = \int_{x_0}^{x_1} h(x, y, y') dx = \int_{x_0}^{x_1} f(x, y, y') + \sum_{k=1}^{m} \lambda_k g_k(x, y, y') dx$$