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Isoperimetric constraints
(continued)

We solve the more general case of Dido’s problem: a geneaglesh
without a coast, so that the perimeter must be parametridabicribed.
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Dido’s problem - traditional

Dido’s problem is usually posed as follow

Find the curve of length which encloses the largest possible area, i.e.

maximize
Area= // 1adxdy
Q

lds=1L
5Q

Of course the problem is not yet in a convenient form.

subject to the constraint
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Green’s theorem

Green’s theorem converts an integral over the &&a a contour integral
around the boundadQ.

L (et 50 ) = f_ooy - wax

for @, : Q — R such thatp, Y, ¢ andy, are continuous.

This converts an area integral over a region into a line nadesyound the
boundary.

Variational Methods & Optimal Control: lecture 15 — 28/



Geometric representation of area

The area of a region is given by

Area= //Q 1adxdy

In Green’s theorem chooge= x/2 andy = y/2, so that we get

Area://1dxdy:} Xay —ydx
Q 2 /50

Previous approach to Dido, was to yse y(x), but in more general case
where the boundary must be closed, we can’t defiag a function ok (or
visa versa). So we write the boundary curve parametrical(x@), y(t)).
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Dido’s problem

If the boundandQ is represented parametrically by(t),y(t)) then

Area = //Qldxdy
1

= 5 ¢ Xdy—ydX
2 J50
1 .
= S P X-oyxd
oQ

So now the problem is written in terms of

one independent variable= t
two dependent variables= (x,y)
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Isoperimetric constraint

Previously we wrote the isoperimetric constraint as
X1
G{y} = /1ds: / VIty2dx=L
Xo

but now we must also modify this using

ds _ [dx®  dy?
d | dt = dt

G{x,y} :%1d52%\/k2+92d =L

to get
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Dido’s problem: Lagrange multiplier

Hence, we look for extremals of
1, . . 2 W2
H{x,y}zfi(xy—yX)H\ X +y d

Soh(t,X,y,X,y) = 3 (xy — yX) + A i +3y°, and there are two dependent
variables, with derivatives

oh o 1 W
ox 2Y ox 2y /).(2+>./2
oh . oh 1 AY
y 2 w . 2T T
y y X+
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Dido’s problem: EL equations

Leading to the 2 Euler-Lagrange eguations

LI B DT S
dt _ 2 \/)?yz 2
d -}x+ Ay | = —}5(
dt _2 m
Integrate ! X 5 R A
—5Y m = Y
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Dido’s problem: solution

AX
[2 .2 y+A
X +Y
Ay = —X—B

"2 .2
\/X +Y
Now square the two, and add them to get

2 .2
.2+>./2 = (y+A)’+ (x+B)?
X +Yy

)\2

or, more simply(y + A)? + (x+ B)? = A?, the equation of a circle with
center(—A, —B), radius|A|
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End-conditions

Note, we can’t set value at end points arbitrarily.
| if X(tp) = X(t1), andy(tp) = y(t1), then we get a closed curve,
obviously a circle.

B these conditions only amount to setting one cons#ant,
m there are many valid circles througky, yo), with centered
along a circle of radiug\| about(xp, o).

B on the other hand, if we specify different end-points, weragdly
solving a problem such as the simplified problem consideasd |
week.
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Why does it work?

Why does the Lagrange multiplier approach work here?

Consider Euler’s finite difference method on a uniform god f
approximation of the functional

F{y} = /:f(x,y,x/)dx': iif (xm%) Ax=F(y)

whereAx = (b—a)/n, andAy; =y; —Y;_1. The problem of finding an
extremal curve now becomes one of finding stationary poimtiseo

functionF (y1,¥2,...,¥n).
m we solve this by looking fodF /dy; = O foralli =1,2,...,n.
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Why does it work?

The constraint can be likewise approximated to give

G{y} ~ Zg (x Vi, Ay‘) Ax = G(y) =L

Under our usual conditions dh andG, the limit asn — o gives

F(y) — F{y}

Gly) — Gly}

That is, thefunctions of the approximatioly converge to théunctionals
of the curvey(x).
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Why does it work?

In the finite dimensional case the constraint is

G(y]_,yZ,---,yn> —L=0

we use a standard Lagrange multiplier

H(YL, Y2, Y A) = F (Y1, Y2, .. Yn) + A [G(Y1, Yo, ..., ¥n) — L

B we solve this by looking for

oH . oH
— = =12 ... — =
By 0, Vi 2,....,n, and 5 0

B |ast equation just gives you back your constraint
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Why does it work?

In our formulation of the isoperimetric problem we take

H{y} = F{y} +AG{y}

and we also have
(YN = F(y) A [Gly) - L

In the limit asn — o we find that

H(y,A) — H{y} —AL

The E-L equations foH{y} — AL andH{y} are the same, so they have the
same extremals!
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Why does it work?

See van Brunt, pp.83—87 for a more rigorous explanation gfarage
multipliers in this context.
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Multiple constraints

We can also handle multiple constraints via multiple Lageamultipliers.
For instance, given we wish to find extremals of

F{y}=/X1f(x,y,>/>dx

X0

with them constraints

Gy} = / h ok(X,y,Y) dx = Ly

X0

we would look for extremals of

H{y}=/XOth(w,>/)d><=/X1f(x,y,x/)+ki/\kgk(x,y,>/>d><

X0
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