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Non-integral constraints

It is relatively easy to adapt the Lagrange multiplier technique to the case
with non-integral constraints.

◮ Holonomic constraintsa are of the form

g(t,q) = 0

◮ Non-Holonomic constraints are of the form

g(t,q,
.
q) = 0

The former is simpler, and we consider this first.

aHolonomic comes from the greek “holos”, for “whole”. In thiscontext it
refers to integrability of the constraint. Notice that non-holonomic constraints are
really DEs
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Holonomic Constraints
Constraints of the formg(x,y) = 0, org(t,q) = 0, which don’t involve
derivatives ofy(x) or q can also be handled using a Lagrange multiplier
technique, but we have to introduce a Lagrange multiplier functionλ(x),
not just a single valueλ. Effectively we introduce one Lagrange multiplier
at each point where the constraint is enforced.
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Holonomic constraints

Consider the problem of finding extremals of

F{y}=
∫ x1

x0

f (x,y,y′)dx

subject to the constraint
g(x,y) = 0

In this case we introduce a functionλ(x) (also called a Lagrange
multiplier), and look for extremals of

H{y,λ}= F{y}+
∫ x1

x0

λ(x)g(x,y)dx
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Why does it work

Go back to the finite approximation Consider Euler’s finite difference
method on a uniform grid for approximation of the functional

F{y}=
∫ b

a
f (x,y,y′)dx ≃

n

∑
i=1

f

(

xi,yi,
∆yi

∆x

)

∆x = F̄(y)

The constraint applies a condition on each(xi,yi), so in the approximation
there aren constraints,

g(xi,yi) = 0 for i = 1, . . . ,n
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Why does it work

There aren constraints,

g(xi,yi) = 0 for i = 1, . . . ,n

For optimization problems withn constraints, we introducen Lagrange
multipliers, and maximize

H(y) = F(y)+
n

∑
k=1

λkg(xk,yk)

In the limit asn → ∞

∆x
n

∑
k=1

λkg(xk,yk)→

∫ b

a
λ(x)g(x,y)dx

and hence the choice ofH{y,λ}= F{y}+
∫ b

a λ(x)g(x,y)dx.
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Holonomic constraints

H{y,λ} = F{y}+
∫ x1

x0

λ(x)g(x,y)dx

=

∫ x1

x0

f (x,y,y′)+λ(x)g(x,y)dx

So we can apply the Euler-Lagrange equations to

h(x,y,y′,λ) = f (x,y,y′)+λ(x)g(x,y)

To get the Euler-Lagrange equations

d
dx

∂f
∂y′

−
∂f
∂y

−λ(x)
∂g
∂y

= 0
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Multiple dependent variables

With multiple dependent variables holonomic constraints are of the form

g(t,q) = 0

and they don’t involve derivatives.

Example: find geodesics on a cylinder, e.g. minimize

F{x,y,z}=
∫ t1

t0

√.
x

2
+

.
y

2
+

.
z

2
dt

subject tox2+ y2− r2 = 0, the equation of a right circular cylinder with
radiusr.
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Multiple dependent variables

H{q,λ}= F{q}+
∫ x1

x0

λ(t)g(t,q)dx

So we can apply the Euler-Lagrange equations to

h(t,q,
.
q,λ) = f (t,q,

.
q)+λ(t)g(t,q)

To get the Euler-Lagrange equations

d
dx

∂f

∂.qk

−
∂f
∂qk

−λ(t)
∂g
∂qk

= 0

for all k.
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General geodesic problem

General geodesic problem can be written as minimize

F{x,y,z}=
∫ t1

t0

√.
x

2
+

.
y

2
+

.
z

2
dt

subject to
g(x,y,z) = 0

whereg(x,y,z) = 0 is the equation describing the surface of interest.

We instead minimize

H{x,y,z,λ}=
∫ t1

t0

√.
x

2
+

.
y

2
+

.
z

2
+λ(t)g(x,y,z)dt
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General geodesic problem

Given this formulation of the geodesic problem, the E-L equations
become

d
dt

.
x

√.
x

2
+

.
y

2
+

.
z

2
−λ(t)

∂g
∂x

= 0

d
dt

.
y

√.
x

2
+

.
y

2
+

.
z

2
−λ(t)

∂g
∂y

= 0

d
dt

.
z

√.
x

2
+

.
y

2
+

.
z

2
−λ(t)

∂g
∂z

= 0

which may be easier to solve in some cases.
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Example: Geodesics on the sphere

Find the geodesics on the sphere: e.g. we wish to find a parametric curve
(x(t),y(t),z(t)) to minimize distance

F{x,y,z}=
∫ t1

t0

√.
x

2
+

.
y

2
+

.
z

2
dt

subject to being on the surface of a sphere

x2+ y2+ z2 = a2

We get

h(t,x,y,z,
.
x,
.
y,
.
z) =

√.
x

2
+

.
y

2
+

.
z

2
+λ(t)(x2+ y2+ z2)

and there are three dependent variables(x,y,z)

Variational Methods & Optimal Control: lecture 16 – p.12/48



Example: Geodesics on the sphere

∂h
∂x

= 2λx
∂h

∂.x =

.
x

√.
x

2
+

.
y

2
+

.
z

2

∂h
∂y

= 2λy
∂h

∂.y =

.
y

√.
x

2
+

.
y

2
+

.
z

2

∂h
∂z

= 2λz
∂h

∂.z =

.
y

√.
x

2
+

.
y

2
+

.
z

2
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Example: Geodesics on the sphere

There are 3 dependent variables(x,y,z), and so 3 E-L equations, e.g.

2λx =
d
dt





.
x

√.
x

2
+

.
y

2
+

.
z

2





=

..
x

√.
x

2
+

.
y

2
+

.
z

2
−

.
x(
.
x
..
x +

.
y
..
y +

.
z
..
z )

(
.
x

2
+

.
y

2
+

.
z

2
)3/2

Due to symmetry, the equation

2λu =

..
u

√.
x

2
+

.
y

2
+

.
z

2
−

.
u(

.
x
..
x +

.
y
..
y +

.
z
..
z )

(
.
x

2
+

.
y

2
+

.
z

2
)3/2

holds foru = x,y andz.
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Example: Geodesics on the sphere

Now

2λu =
..
u

1
√.

x
2
+

.
y

2
+

.
z

2
−

.
u
(
.
x
..
x +

.
y
..
y +

.
z
..
z )

(
.
x

2
+

.
y

2
+

.
z

2
)3/2

is a second order linear DE inu, and so it has only 2 linearly independent
solutions, but the DE holds for
u = x,y andz

Thereforex, y, andz are linearly dependent, and so we can write them as

Ax+By+Cz = 0

but this is the equation of a plane through the origin.Once again we have
shown that geodesics on the sphere aregreat circles
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Misc

◮ Note, sometimes a constraint involving derivatives may be
integrated to get a holonomic constraint, so we refer to these
constraints as integrable.

◮ In general, though, we will also need to deal with constraints
involving derivatives as these may describe an entire systems
behaviour, and be very difficult to integrate out of the problem.
⊲ e.g., when we want to describe a “controlled” system
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Non-Holonomic Constraints
Constraints of the formg(x,y,y′) = 0, org(t,q,

.
q) = 0, which involve

derivatives. They are effectively additional DEs which we need to solve,
but we can once again use Lagrange multipliers.
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Non-holonomic constraints

Example non-holonomic constraints:

g(x,y,y′) = 0 or g(t,q,
.
q) = 0

Instances:

◮ y =
.
x

◮ y′2 = logx

Solution technique is just as for holonomic constraints, e.g.,

H{y,λ}= F{y}+
∫ x1

x0

λ(x)g(x,y,y′)dx

and the argument for why it works is almost identical.
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Example

Using such constraints to avoid higher derivatives

Imagine the functional

F{y}=
∫ b

a
f (x,y,y′,y′′)dx

we have already see that we can derive a new form of the E-L
(Euler-Poisson) equations for this case, e.g.

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

= 0

but constraints give us an alternative approach to this problem.

Variational Methods & Optimal Control: lecture 16 – p.19/48

Example

Introduce the new variablez = y′, and rewrite the functional as

F{y}=
∫ b

a
f (x,y,z,z′)dx

Now there is more than one dependent variable, but no second order
derivatives, however, we must also introduce the constraint that

z− y′ = 0

and so we look for stationary curves of the functional

H{y,z,λ}=
∫ b

a
f (x,y,z,z′)+λ(x)(z− y′)dx
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Example

The Euler-Lagrange equations fory andz are

d
dx

∂h
∂y′

−
∂h
∂y

= 0

d
dx

∂h
∂z′

−
∂h
∂z

= 0

note thath(x,y,z,z′) = f (x,y,z,z′)+λ(x)(z− y′) so the E-L equations
become

d
dx

[−λ(x)]−
∂ f
∂y

= 0

d
dx

∂ f
∂z′

−
∂ f
∂z

−λ(x) = 0
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Example

The first Euler-Lagrange equation can be rewritten

dλ
dx

= −
∂ f
∂y

Differentiating the second E-L equation WRTx we get

d2

dx2

∂ f
∂z′

−
d
dx

∂ f
∂z

−
dλ
dx

= 0

Note from above thatλ′ =− fy and thatz = y′ andz′ = y′′ we get (as
before) the Euler-Poisson equation:

d2

dx2

∂ f
∂y′′

−
d
dx

∂ f
∂y′

+
∂ f
∂y

= 0
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Some intuition

◮ Earlier we derived the Euler-Lagrange equations assuming treatingy
andy′ as if they were independent variables.
⊲ In reality they are related along the extremal
⊲ Lets get some motivation for this

◮ Start by taking a new variableu(x) = y′(x), and put this into our
optimization problem

H{y,u,λ}=
∫ b

a
f (x,y,u)+λ(x)(u− y′)dx

⊲ we can use same trick as in previous slides to get the
Euler-Lagrange equations
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Newton’s aerodynamical problem

Find extremal of “air resistance”

F{y}=
∫ R

0

x
1+ y′2

dx,

subject toy(0) = L andy(R) = 0 andy′ ≤ 0 andy′′ ≥ 0
The Euler-Lagrange equations are

d
dx

∂ f
∂y′

−
∂ f
∂y

=
d
dx

2xy′

(1+ y′2)2
= 0

Rearranging we get

2xy′ = c(1+ y′2)2

which isn’t much fun to solve directly.
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Newton’s aerodynamical problem

Alternative: define a new variableu, and constrain it

u =−y′

Add Lagrange multiplierλ(x) to the functional

H{y,u,λ}=
∫ R

0

x
1+u2

+λ(y′+u)dx,

Now solve as you would for a problem with three dependent variables
(y,u,λ) of x.

◮ We expect three Euler-Lagrange equations

◮ One equation in each dependent variable
⊲ but we already know theλ equation
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Newton’s aerodynamical problem

Euler-Lagrange equations

d
dx

∂ f
∂y′

−
∂ f
∂y

= 0

d
dx

∂ f
∂u′

−
∂ f
∂u

= 0

d
dx

∂ f
∂λ′

−
∂ f
∂λ

= 0

give the DEs

λ = const

−
2xu

(1+u2)2
−λ = 0

y′+u = 0
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Newton’s aerodynamical problem

λ = const

−
2xu

(1+u2)2
−λ = 0

y′+u = 0

If λ = 0, then forx > 0 we getu = 0, and hencey = const.
If λ 6= 0 then the second equation implies

x(u) =
c
u
(1+u2)2 = c

(

1
u
+2u+u3

)

.

for c constant.
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Newton’s aerodynamical problem

From the last equation (which we insisted on at the start), weget

dy
dx

=−u

Now note that from the chain rule

dy
du

=
dy
dx

dx
du

=−u
dx
du

= c

(

−
1
u
+2u+3u3

)

which we can integrate with respect tou to get

y(u) = const − c

(

− lnu+u2+
3
4

u4

)
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Newton’s aerodynamical problem

Some notes about the solution

◮ x(u) = c
u(1+u2)2 > 0 for all u (becauseu =−y′ > 0)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

u

 

 

x
y

◮ hence the part of the curve nearx = 0 must havey = L

◮ but y(x) = L for all x ∈ [0,R] can’t be the minimum because we
know better profiles (e.g. a cone).
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Newton’s aerodynamical problem

So we know the solution must look like something like

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

A simple example is thefrustum of a cone

◮ the part of a cone between two parallel planes

◮ but we can do better by making the sloped part follow E-L equations

◮ still need to work out where the “corner” goes
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Newton’s aerodynamical problem

Equations: for curved part

x(u) = c

(

1
u
+2u+u3

)

y(u) = const − c

(

− lnu+u2+
3
4

u4

)

End points conditions:

y(u1) = L

y(u2) = 0

x(u1) = x1

x(u2) = R

but we don’t knowx1, u1 or u2.
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Newton’s aerodynamical problem

y(u) = const − c

(

− lnu+u2+
3
4

u4

)

At u1 we havey(u1) = L. For convenience we write

y(u) = L− c

(

−A− lnu+u2+
3
4

u4

)

so atu1 we get

L = L− c

(

− lnu1−A+u2
1+

3
4

u4
1

)

0 = −c

(

− lnu1−A+u2
1+

3
4

u4
1

)

A = − lnu1+u2
1+

3
4

u4
1
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Newton’s aerodynamical problem

y(u) = L− c

(

−A− lnu+u2+
3
4

u4

)

x(u) =
c
u
(1+u2)2

Now atu2 we havex(u2) = R andy(u2) = 0 so

L = c

(

−A− lnu2+u2
2+

3
4

u4
2

)

R =
c
u2

(1+u2
2)

2

divide the first equation by the second and we get ...
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Newton’s aerodynamical problem

L
R
= u2

(

−A− lnu2+u2
2+

3
4

u4
2

)

(1+u2
2)

−2

The function on the RHS is increasing so we can solve this equation
(numerically (e.g., using matlab’sfsolve), and we obtain a value foru2.
We can findc usingx(u2) = R

R =
c
u2

(1+u2
2)

2

c =
u2R

(1+u2
2)

2

All we need to know now isu1, which gives usA andx(u1), which gives
usu2, which gives usc.
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Newton’s aerodynamical problem

Takex(u1) = x1

F{y} =

∫ x1

0
xdx+

∫ R

x1

x
1+ y′2

dx

=
x2

1

2
+

∫ u2

u1

c(1+u2)2/u
1+u2

dx
du

du

=
x2

1

2
+ c2

∫ u2

u1

(1+u2)2(3u2−1)
u3

du

=
x2

1

2
+ c2

[

3u4

4
+

5u2

2
+ ln(u)+

1
2u2

]u2

u1

and note thatc andu2 are effectively functions ofu1.
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Newton’s aerodynamical problem

Numerical evaluation of the integralF for different values of ifu1

0.4 0.6 0.8 1 1.2 1.4
0.0802

0.0804

0.0806

0.0808

0.081

0.0812

0.0814

0.0816

u
1

F

Minimum occurs foru1 = 1, we’ll prove this later on.
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Intro to Optimal Control
One way we see non-holonomic constraints is when we considercontrol
problems. In these we seek to control a system described by a DE (the
constraint) subject to some input which we can control (optimize).
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Systems

system = machine + controller

e.g. vehicle

◮ machine: engine, body, seating

◮ control: accelerator, brakes, steering (driver)

Problems:

◮ Control problems: how do we set, say the steering and acceleration
of a car to get it from pointA to pointB.

◮ Optimal Control problems: same as above, but do it in minimum
time, or using minimum fuel.
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Solution Philosophy

Solve however you can

◮ often easier approach that CoV
⊲ systems of DEs just need to be solved
⊲ a lot is about whether a control exists!
⊲ e.g. see “Optimal Control: an Introduction to the Theory with

Applications”, Leslie M. Hocking, Clarendon Press, Oxford,
1991.

◮ on the other hand, we have a powerful set of tools now, so we shall
use them here
⊲ all it takes is a shift in perspective
⊲ then all of the CoV work from earlier is applicable
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CoV for Optimal Control

Optimal control is just a switch in our perspective:

◮ previous problems, mainly concerned with modeling and analysis of
physical (often mechanical systems), e.g. catenary

⊲ take a system, and find an extremal which minimizes, say
potential energy, and this describes the system

◮ now we can set part of the systems (e.g. force) to create a particular
curve which minimizes some quantity

⊲ e.g. set force to minimize fuel usage of a rocket (changing
orbits)
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Formulation of control problems

We break a control problem into two parts
◮ The system state: x(t) = (x1(t), . . . ,xn(t))t

The system state describes the system (e.g. position and velocity of
the car in car parking example)

◮ The control: u(t) = (u1(t), . . . ,um(t))t

We apply the control to the system (e.g. force applied to the car).
The evolution of the system is governed by a DE

.
x(t) = g(t,x,u)

In a control problem we control the system to get it to a particular state
x(t1) at timet1, given initial statex(t0).
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Optimal control problems

In an optimal control problem we have

.
x(t) = g(t,x,u)

and once again we wish to get to statex(t1) given initial statex(t0), but
now we wish to do so while minimizing a functional

F{u}=
∫ t1

t0
f (t,x,u)dt

That is, we wish to choose a functionu(t) which minimizes the functional
F{u}, while satisfying the end-point conditionsx(t0) = x0 andx(t1) = x1,

and the non-holonomic constraint
.
x(t) = g(t,x,u).
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Example: stimulated plant growth

Plant growth problem:

◮ market gardener wants to plants to grow to a fixed height 2 within a
fixed window of time[0,1]

◮ can supplement natural growth with lights with “brightness” u(t)

◮ growth rate dictates .
x = 1+u

◮ cost of lights

F{u}=
∫ 1

0

1
2

u(t)2dt
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Plant growth problem statement

Minimize

F{u}=
∫ 1

0

1
2

u2 dt

Subject tox(0) = 0, andx(1) = 2 and

.
x = 1+u

◮ we effectively have two dependent variablesx andu

◮ though we can only control one of these
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Plant growth: Lagrange multiplier

We can include the non-holonomic constraint into the problem via a
Lagrange multiplier, e.g., we seek to minimize

H{u,x,λ} =

∫ 1

0

1
2

u2+λ(t)
[.
x−1−u

]

dt

=

∫ 1

0
h(x,u,

.
x,λ)dt

We might think ofλ as a third variable, but the E-L equations inλ will just
give us the constraint

.
x = 1+u back again.
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Plant growth: E-L equations

2 dependent variables, so E-L equations

∂h
∂u

−
d
dt

∂h

∂.u = 0

∂h
∂x

−
d
dt

∂h

∂.x = 0

These are
u−λ = 0.

λ = 0

Simplifying we see the solution is

u = const
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Plant growth solution

Going back to the DE
.
x = 1+u, and takingu = c we get

x = (c+1)t + k

The end-point constraints require thatx(0) = 0 andx(1) = 2 so

x = 2t

Clearlyu = 1 is the optimal control.
We can also derive the optimal cost

F{u}=
∫ 1

0

1
2

u(t)2dt =
1
2

Variational Methods & Optimal Control: lecture 16 – p.47/48

Optimal Control

We will consider optimal control much more thoroughly laterin this
course. There are many approaches one can adopt to such problems, and
we shall come back to this problem in particular, later in thecourse. First
we need to know some more CoV, especially how to deal with

◮ free end points
⊲ say there isn’t a fixed time window
⊲ perhaps the final state isn’t pre-determined

◮ costs other than integrals
⊲ e.g., costs associated with end states
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