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Non-fixed end point problems

What happens when we don't fix the boundary points?

There are real problems like this, for instance
» a freely supported beam
end points fixed, but not derivatives
» abeam supported at only one end
one end point and derivative fixed, other free
» shortest path between two curves
end points lie of curves, but not fixed
» rocket changing between two orbits
end points lie on curves, and path is tangent
to the two orbits.

We then gehatural boundary conditions
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Non-fixed end point
problems

What happens when we don't fix the end-points of an extrenratRis

casenatural boundary conditions are automatically introduced, and
these can allow us to solve the E-L equations.
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Free end points:
Fixedx, Freey and/ory

First we'll consider what happens when we allgwr y' to vary at the

end-points, but we still keep thevalues of the end-points fixed &f and
X1.
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Example: freely supported beam

Freely supported beam

For the beam problems considered before, we had to speeifydtivative
at the boundary, but here it can vary.
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Perturbation again

We approach this the same way we did with all other variatiprzblems,
we perturb the curve and examine the First Variation, buttihie, we
allow y(Xp) andy(x;) to vary as well.

YA
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Example: beam fixed at one end point

Beam fixed at one end point

0 d
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Space of Perturbations

Now the space/ of perturbations) contains functions whose valuexat
andx; is no longer zero.

A
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Same derivation of the first variation

Simple case wherg{y} = [* f(x,y,y) dx

f(x9.9) = f(x,y,y>+s[n%+n'%]+o<s2>

F{g}—Fly} = /XO CE(x,9.9)dx /XO Cf(xy.y)dx

al of of
= ¢ — +n = | dx+O(g?
[ Ingy gy o
. F{y+en}—F
SF(ny) = lim {y ne} {y}

= /Xl[r]ﬂJrr]’ﬂ]dx
v oy %
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The first variation

However,dF (n,y) = 0 for all n, which includes cases where
N(Xo) = N(x1) = 0, and so the Euler-Lagrange equation must still be
satisfied for such and extremal.

Given the E-L equation is satisfied by an extremal, the candit
oF (n,y) = 0 next implies that

of } X
na| =0
[ 0y |y
and we can likewise choose curwgsuch that(xp) # 0 andn(x;) =0,

or visa versa, so that we must have

ﬂ
oy’

of
=0 and —| =0
X oy’

X1
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The first variation

As before, we can vary the sign afso forF{y} to be a local minima it
must be the case that

OF(n,y)=0, VneH

however, now# allows curves with arbitrary end-points, so that
n(X) # 0, andn(x;) # O are possible.

Hence when we integrate by parts we get
af 1™ a [af d /of
oy = o]+ []5a(ar)]o

X1
But now the first tern{n %} is not necessarily zero.
Xo
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Euler-Lagrange again

Hence, as before, the extremal must satisfy the E-L equation

d oty ot

dx \oy / oy
but now that the boundary conditions were not specified aspéne
problem, we get natural boundary conditions

of
oy’

of

=0 and —
X oy’

=0

X1

which specify that the derivative at the end-points will leeaz
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Extensions (i)

What happens if we fix one end point, eygxo) = Yo.

The result is we cannot vary this end-point when perturbsiogy(xo) = 0,
and therefore the condition
af 1™
- =0
[“ av] .

collapses to give just one extra condition
of
oy’

Hence the boundary conditions anedular in the sense that when we
remove one, we replace it automatically with the naturaloiauy
condition.

=0

X1
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Extensions (i)

The Euler-Lagrange equations are

of _dof & of
oy dxay  dx2oay”

where the natural boundary conditions are

oy  axay'|, ay  xay'|,
of of
—| =0 and —| =
0Y" |y, 0y" Iy,

where the first two replace absent conditions on the valyeabthe

end-points, and the second two replace absent conditioyisabthe end
points.
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Extensions (ii)

The above results can be extended as before, in particalasider a
functional containing higher order derivatives:

Fivi= [ Exyy.y) dx,

of daf\1* [, 0f1"
w09 = |03 aay)|, 2]
Xo Xo

_|_/X1 g_ Eﬂ_F d_zi dx
w Moy Naxay "Mooy

where we see integration by parts introduces terms inatugliiandn’.
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Bent beam

Lety: [0,d] — IR describe the shape of the beam, and0,d] — IR be the
load per unit length on the beam.

For a bent elastic beam the potential energy from elastaeiis
V, = g /O "2k K= flexural rigidity
The potential energy is
Vo=~ [ bty o
Thus the total potential energy is

d 12
V= [ oy
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Bent Beam: see earlier

The Euler-Lagrange equation is

of _dot & ot
oy dxay  dx2oay”

y(4) — P9
This DE has solution
y(X) = P(X) 4 Cax® + Cx2 + C1X + Co

where thec's are the constants of integration, dR(X) is a particular
solution toP™ (x) = p(x) /K.
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Bent Beam: Example 1

Doubly clamped: see earlier lectures.
Choose a solution of the form

_ p(d—x)%?
Then the derivative

o0 = 202 pld—xPx 0 |

We can see that the constraints are satisfied

y(0)=0 and y(d)=0
y(0)=0 and y(d)=0
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Bent Beam: Example 1

Doubly clamped: see earlier lectures.

A

Two end-points are fixed, and clamped so that they are lexgl, e
y(0) =0,y (0) = 0, andy(d) = 0 andy'(d) = 0.

Variational Methods & Optimal Control: lecture 17 — p.18/39

Bent Beam Example 2

Freely supported, uniform load
The natural constraints are

of , B
a_w . = KY'(X)=0
of , B
a_y” X1 N Ky/ (Xl)_o

The fixed end-points ang0) = y(d) = 0, so uniform load solution looks
like
px (d3 —2dx? +x3)

24k

y(x) =
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Bent Beam Example 3

One end-point fixed, and clamped.
Called aCantilever
The natural constraints are

g_;// . = Ky'(x)=0
of dof| _ _d.,
ay  dxay’|, aan | 1
= Ky"(x)=0

The clamped end-point introduces constrayi®y = 0 andy' (0) = 0 so
the solution for uniform load is

_ pxX3(6d? — 4dx+x?)

_pd?
y(x) TP and y(d)

8K
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Bent Beam Example 4

One end-point fixed, but not clamped.
In this case the beam just collapses, and lies vertical.

The approach doesn’t work, but this is a failure of thedel, not the
method.

In this case, the cantilever approximation (tkats fixed) no longer
works, and we need to consider a more general model thatstote
vary as well.

Variational Methods & Optimal Control: lecture 17 — p.23/39

Bent beam, end-points conditions

End-point conditions are modular: i.e., we can use diffeesnl-point
conditions at each end of the beam.

» clamped: specifies the position, and the derivative.

» freely supported: specifies the position. Natural boundary
condition is that the second derivative is zero at the endtpoi

» no condition: neither position, nor end-point are specified, so the
natural boundary conditions fix the second and third devigatat
the end point to be zero.
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Intro to Optimal Control
(part I1)

Often in optimal control problems we may specify the inigtdte, but not
the final state. However, there may be a cost associated hvetfirtal
state, and we include this in the functional to be minimizad (
maximized). We call this germinal cost

Variational Methods & Optimal Control: lecture 17 — p.24/39




Optimal control with terminal costs

In an optimal control problem we again have a non-holonomitstraint

X(t) = g(t,x,u)

given initial statex(tp), but now the final state will be free and we wish to
minimize a functional

F{u} = o(ts,x(t)) + § f(t,x,u)ct

to

the termo(ty, X(t1)) is called theterminal cost.
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Terminal costs: example

Imagine the problem we wish to solve is to minimize the time,ti. ,\We
could write this as a terminal cost problem, e.g. minimize

F{U} =t

Soq(t) =t, and :@= 1 and therefore, we can write the minimum time
problem in the form

t
F{u}=/ 1d
to

Variational Methods & Optimal Control: lecture 17 — p.27/39

Terminal costs reformulation

Note that td
@l x(t2)) = Qllo.x(10) + | @t 0d

. to
SO we can rewrite
t1

F{u} = @(ty,x(t1))+ f(t,x,u)ct

to

_ otox(to)+ [ [f(t,x,u) + %(p(t,x)} &

to

where note that the first term is fixed by the starting poind, smwe can
drop it from the problem.
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Terminal costs and E-L equations

Given a problem like

F{u} = /[txu+ (p(tx)]d

Note that
d 09 & 09,

a(p(tax) at + aX| Xl

E-L equations:
dof oaf dap 0% 1 % .

dtox,  ow | dtox, oxdt 2y oxax < °
dot_af
dtox, 0%
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Terminal costs and E-L equations

Hence terminal costs play no part in the Euler-Lagrangeteaus which

makes sense
» fixed end-point problem

> terminal cost is fixed (by the end-point)
> so Euler-Lagrange equations unchanged
» free end-point problem

> Euler-Lagrange equations aren't effected by freeing up the
end-points
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Example: stimulated plant growth

Plant growth problem:

» market gardener wants to plants to grow as much as possittigwi
a fixed window of tim€to, t1] = [0, 1]

» supplement natural growth with lights as before

v

growth rate dictatez = 1+ u

» cost of lights 11
F{u}:/ Su(t’a
0

» value of crop is proportional to the heighttat= 1

Ot X(t)) = kx(1)
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Terminal costs and boundary conditions

Terminal costs play no part in the Euler-Lagrange equatiomisfor
free-end points we get a new natural boundary condition:

» Take a functional written in the form:

F{x} = ttl [f(t,x,)'()Jr :t(p(t x)] d= [ htxRd

to

» Natural boundary condition

on| o, ode _of o _
0y, 0% OR O] 0RO
where we use OCP = 0@

<P(t X) = e a_XiXi
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Plant growth problem statement

Minimize (equivalent to maximizing the profit)

F{u,x} = —kx +/ Sl — /12 kdt

Subject tox(0) =0,
X=1+u
» note that the extra constantinwill not effect the E-L equations, so
the solution must still have the same form, iLe= const
» but the end conditions have changed
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Plant growth

Including the Lagrange multipliex(t) [X— 1 —ul

1
H{u,x} — / h(t,u 5 + S
0 dt
where

h(t,u,x) = %u2+)\(t) [X—1—ul

Px) = —kx

Now the independent variabletisand there are three dependent variables
X, U, A.
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Plant growth: natural boundary cond.

Natural boundary conditions at= 1.

n0
0X 6Xt1

oh odp
a—i-% 0

t1
The second is trivial, i.e., & 0, so consider the first:

oh 0
—+=—=A—-k=0

ax * ox

We already know from the E-L equations that u, andu = cong, so the
end result is thatl = k.
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Plant growth: E-L equations

Three dependent variables, so three E-L equations

doh oh
doh oh
a%+ﬁ =0 (2)
d oh oh
——+ =0 3)
dt gy OA

Notice thatdg/dt is a constant, so it plays no part.
» his linear inx so equation (1) is degenerate
» equation (2) gives us the E-L equation we had before
» equation (3) just gives us back the constraint
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Plant growth solution

The solution isu = k, and so
X(1) =1+k

Whenk = 1 we get the same solution we got before, but that isn’t a
general rule.

Also the optimization objective will be
F{ux}=—1—k+1.5k?
written in terms of profit we get

profit = 14 k — 1.5k
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Plant growth solution

Another way to see how the end-point conditions work
» The E-L equations still apply
» Souis still a constant
» X(1) =1+uis the solution to the system DE
The height at; = 1 would be 14-u and so the profit would be

11 1
F{u,x}:1+ku—/ “ud = 1+ku— Zu?
02 2

Clearly, the maximum here occurs foe k.
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Freeing up the independent variable

We can deal with both the optimal control problem and theaqsling
beam by freeing up the value of the dependent variable.
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Optimal Control

We will continue with optimal control later in the course whee have
considered a bit more theory, but consider the followingdopeon:

Replace the previous plant growth problem by a similar proh)|
but instead of a terminal cost (related to value of plant) aime to
get the plants to height 2 in time that minimizes the cost.

Nowt; is also a free variable — how can we deal with this?
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