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Non-fixed end point
problems

What happens when we don’t fix the end-points of an extremal? In this
casenatural boundary conditions are automatically introduced, and
these can allow us to solve the E-L equations.
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Non-fixed end point problems

What happens when we don’t fix the boundary points?

There are real problems like this, for instance
◮ a freely supported beam

end points fixed, but not derivatives

◮ a beam supported at only one end
one end point and derivative fixed, other free

◮ shortest path between two curves
end points lie of curves, but not fixed

◮ rocket changing between two orbits
end points lie on curves, and path is tangent
to the two orbits.

We then getnatural boundary conditions
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Free end points:
Fixedx, Freey and/ory′

First we’ll consider what happens when we allowy or y′ to vary at the
end-points, but we still keep thex values of the end-points fixed atx0 and
x1.
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Example: freely supported beam

Freely supported beam

ρ
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For the beam problems considered before, we had to specify the derivative
at the boundary, but here it can vary.
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Example: beam fixed at one end point

Beam fixed at one end point

ρ
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Perturbation again

We approach this the same way we did with all other variational problems,
we perturb the curve and examine the First Variation, but this time, we
allow y(x0) andy(x1) to vary as well.

x

y

1(x ,y )1
y = y(x)

y = y + 

0(x ,y )0

ε η
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Space of Perturbations

Now the spaceH of perturbationsη contains functions whose value atx0

andx1 is no longer zero.

0x 1x
x

η

y
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Same derivation of the first variation

Simple case whereF{y}=
∫ x1

x0
f (x,y,y′)dx

f (x, ŷ, ŷ′) = f (x,y,y′)+ ε
[

η
∂ f
∂y

+η′ ∂ f
∂y′

]

+O(ε2)

F{ŷ}−F{y} =

∫ x1

x0

f (x, ŷ, ŷ′)dx−
∫ x1

x0

f (x,y,y′)dx

= ε
∫ x1

x0

[

η
∂ f
∂y

+η′ ∂ f
∂y′

]

dx+O(ε2)

δF(η,y) = lim
ε→0

F{y+ εη}−F{y}
ε

=

∫ x1

x0

[

η
∂ f
∂y

+η′ ∂ f
∂y′

]

dx
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The first variation

As before, we can vary the sign ofε, so forF{y} to be a local minima it
must be the case that

δF(η,y) = 0, ∀η ∈H

however, nowH allows curves with arbitrary end-points, so that
η(x0) 6= 0, andη(x1) 6= 0 are possible.

Hence when we integrate by parts we get

δF(η,y) =

[

η
∂ f
∂y′

]x1

x0

+
∫ x1

x0

η
[

∂ f
∂y

−
d
dx

(

∂ f
∂y′

)]

dx

But now the first term
[

η ∂ f
∂y′

]x1

x0

is not necessarily zero.
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The first variation

However,δF(η,y) = 0 for all η, which includes cases where
η(x0) = η(x1) = 0, and so the Euler-Lagrange equation must still be
satisfied for such and extremal.

Given the E-L equation is satisfied by an extremal, the condition
δF(η,y) = 0 next implies that

[

η
∂ f
∂y′

]x1

x0

= 0

and we can likewise choose curvesη such thatη(x0) 6= 0 andη(x1) = 0,
or visa versa, so that we must have

∂ f
∂y′

∣

∣

∣

∣

x0

= 0 and
∂ f
∂y′

∣

∣

∣

∣

x1

= 0
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Euler-Lagrange again

Hence, as before, the extremal must satisfy the E-L equations

d
dx

(

∂ f
∂y′

)

−
∂ f
∂y

= 0

but now that the boundary conditions were not specified as part of the
problem, we get natural boundary conditions

∂ f
∂y′

∣

∣

∣

∣

x0

= 0 and
∂ f
∂y′

∣

∣

∣

∣

x1

= 0

which specify that the derivative at the end-points will be zero.
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Extensions (i)

What happens if we fix one end point, e.g.y(x0) = y0.

The result is we cannot vary this end-point when perturbing,soη(x0) = 0,
and therefore the condition

[

η
∂ f
∂y′

]x1

x0

= 0

collapses to give just one extra condition

∂ f
∂y′

∣

∣

∣

∣

x1

= 0

Hence the boundary conditions aremodular in the sense that when we
remove one, we replace it automatically with the natural boundary
condition.
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Extensions (ii)

The above results can be extended as before, in particular, consider a
functional containing higher order derivatives:

F{y}=
∫ x1

x0

f (x,y,y′,y′′)dx,

δF(η,y) =

[

η
(

∂ f
∂y′

−
d
dx

∂ f
∂y′′

)]x1

x0

+

[

η′ ∂ f
∂y′′

]x1

x0

+

∫ x1

x0

[

η
∂ f
∂y

−η
d
dx

∂ f
∂y′

+η
d2

dx2

∂ f
∂y′′

]

dx

where we see integration by parts introduces terms including η andη′.
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Extensions (ii)

The Euler-Lagrange equations are

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

= 0

where the natural boundary conditions are

∂ f
∂y′

−
d
dx

∂ f
∂y′′

∣

∣

∣

∣

x0

= 0 and
∂ f
∂y′

−
d
dx

∂ f
∂y′′

∣

∣

∣

∣

x1

= 0

∂ f
∂y′′

∣

∣

∣

∣

x0

= 0 and
∂ f
∂y′′

∣

∣

∣

∣

x1

= 0

where the first two replace absent conditions on the value ofy at the
end-points, and the second two replace absent conditions ony′ at the end
points.
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Bent beam

Let y : [0,d]→ IR describe the shape of the beam, andρ : [0,d]→ IR be the
load per unit length on the beam.
For a bent elastic beam the potential energy from elastic forces is

V1 =
κ
2

∫ d

0
y′′2 dx, κ = flexural rigidity

The potential energy is

V2 =−

∫ d

0
ρ(x)y(x)dx

Thus the total potential energy is

V =
∫ d

0

κy′′2

2
−ρ(x)y(x)dx
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Bent Beam: see earlier

The Euler-Lagrange equation is

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

= 0

y(4) =
ρ(x)

κ

This DE has solution

y(x) = P(x)+ c3x3+ c2x2+ c1x+ c0

where theck’s are the constants of integration, andP(x) is a particular
solution toP(4)(x) = ρ(x)/κ.
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Bent Beam: Example 1

Doubly clamped: see earlier lectures.

ρ

0 d

Two end-points are fixed, and clamped so that they are level, e.g.
y(0) = 0, y′(0) = 0, andy(d) = 0 andy′(d) = 0.

Variational Methods & Optimal Control: lecture 17 – p.18/39

Bent Beam: Example 1

Doubly clamped: see earlier lectures.
Choose a solution of the form

y(x) =
ρ(d− x)2x2

24κ

Then the derivative

y′(x) =
2ρ(d− x)x2

12κ
+

ρ(d− x)2x
12κ 0 d

We can see that the constraints are satisfied

y(0) = 0 and y(d) = 0

y′(0) = 0 and y′(d) = 0
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Bent Beam Example 2

Freely supported, uniform load
The natural constraints are

∂ f
∂y′′

∣

∣

∣

∣

x0

= κy′′(x0) = 0

∂ f
∂y′′

∣

∣

∣

∣

x1

= κy′′(x1) = 0

ρ
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The fixed end-points arey(0) = y(d) = 0, so uniform load solution looks
like

y(x) =
ρx

(

d3−2dx2+ x3
)

24κ
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Bent Beam Example 3

One end-point fixed, and clamped.
Called aCantilever
The natural constraints are

∂ f
∂y′′

∣

∣

∣

∣

x1

= κy′′(x1) = 0

∂ f
∂y′

−
d
dx

∂ f
∂y′′

∣

∣

∣

∣

x1

= −
d
dx

κy′′
∣

∣

∣

∣

x1

= κy′′′(x1) = 0

ρ
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The clamped end-point introduces constraintsy(0) = 0 andy′(0) = 0 so
the solution for uniform load is

y(x) =
ρx2(6d2−4dx+ x2)

24κ
and y(d) =

ρd4

8κ
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Bent beam, end-points conditions

End-point conditions are modular: i.e., we can use different end-point
conditions at each end of the beam.

◮ clamped: specifies the position, and the derivative.

◮ freely supported: specifies the position. Natural boundary
condition is that the second derivative is zero at the end point.

◮ no condition: neither position, nor end-point are specified, so the
natural boundary conditions fix the second and third derivatives at
the end point to be zero.
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Bent Beam Example 4

One end-point fixed, but not clamped.

In this case the beam just collapses, and lies vertical.

The approach doesn’t work, but this is a failure of themodel, not the
method.

In this case, the cantilever approximation (thatx1 is fixed) no longer
works, and we need to consider a more general model that allows x1 to
vary as well.
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Intro to Optimal Control
(part II)

Often in optimal control problems we may specify the initialstate, but not
the final state. However, there may be a cost associated with the final
state, and we include this in the functional to be minimized (or
maximized). We call this aterminal cost.
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Optimal control with terminal costs

In an optimal control problem we again have a non-holonomic constraint

.
x(t) = g(t,x,u)

given initial statex(t0), but now the final state will be free and we wish to
minimize a functional

F{u}= φ(t1,x(t1))+
∫ t1

t0
f (t,x,u)dt

the termφ(t1,x(t1)) is called theterminal cost.
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Terminal costs reformulation

Note that
φ(t1,x(t1)) = φ(t0,x(t0))+

∫ t1

t0

d
dt

φ(t,x)dt

so we can rewrite

F{u} = φ(t1,x(t1))+
∫ t1

t0
f (t,x,u)dt

= φ(t0,x(t0))+
∫ t1

t0

[

f (t,x,u)+
d
dt

φ(t,x)
]

dt

where note that the first term is fixed by the starting point, and so we can
drop it from the problem.
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Terminal costs: example

Imagine the problem we wish to solve is to minimize the time, i.e. t1. ,We
could write this as a terminal cost problem, e.g. minimize

F{u}= t1

Soφ(t) = t, and d
dt φ = 1 and therefore, we can write the minimum time

problem in the form

F{u}=
∫ t1

t0
1dt
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Terminal costs and E-L equations

Given a problem like

F{u}=
∫ t1

t0

[

f (t,x,u)+
d
dt

φ(t,x)
]

dt

Note that
d
dt

φ(t,x) =
∂φ
∂t

+
n

∑
i=1

∂φ
∂xi

.
xi

E-L equations:

d
dt

∂ f

∂.xk

−
∂ f
∂xk

+
d
dt

∂φ
∂xk

−
∂2φ

∂xk∂t
−

n

∑
i=1

∂2φ
∂xk∂xi

.
xi = 0

d
dt

∂ f

∂.xk

−
∂ f
∂xk

= 0
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Terminal costs and E-L equations

Hence terminal costs play no part in the Euler-Lagrange equations, which
makes sense
◮ fixed end-point problem

⊲ terminal cost is fixed (by the end-point)
⊲ so Euler-Lagrange equations unchanged

◮ free end-point problem
⊲ Euler-Lagrange equations aren’t effected by freeing up the

end-points
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Terminal costs and boundary conditions

Terminal costs play no part in the Euler-Lagrange equations, but for
free-end points we get a new natural boundary condition:

◮ Take a functional written in the form:

F{x}=
∫ t1

t0

[

f (t,x,
.
x)+

d
dt

φ(t,x)
]

dt =
∫ t1

t0
h(t,x,

.
x)dt

◮ Natural boundary condition

∂h

∂.xk

∣

∣

∣

∣

∣

t=t1

=
∂ f

∂.xk

+
∂

∂.xk

dφ
dt

∣

∣

∣

∣

∣

t=t1

=
∂ f

∂.xk

+
∂φ
∂xk

∣

∣

∣

∣

∣

t=t1

= 0

where we use d
dt

φ(t,x) =
∂φ
∂t

+
n

∑
i=1

∂φ
∂xi

.
xi
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Example: stimulated plant growth

Plant growth problem:

◮ market gardener wants to plants to grow as much as possible within
a fixed window of time[t0, t1] = [0,1]

◮ supplement natural growth with lights as before

◮ growth rate dictates
.
x = 1+u

◮ cost of lights
F{u}=

∫ 1

0

1
2

u(t)2dt

◮ value of crop is proportional to the height att1 = 1

φ(t1,x(t1)) = kx(1)

Variational Methods & Optimal Control: lecture 17 – p.31/39

Plant growth problem statement

Minimize (equivalent to maximizing the profit)

F{u,x}=−kx(1)+
∫ 1

0

1
2

u2 dt =
∫ 1

0

1
2

u2− k dt

Subject tox(0) = 0, .
x = 1+u

◮ note that the extra constant inF will not effect the E-L equations, so
the solution must still have the same form, i.e.,u = const

◮ but the end conditions have changed
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Plant growth

Including the Lagrange multiplierλ(t)
[.
x−1−u

]

H{u,x}=
∫ 1

0
h(t,u,

.
x)+

d
dt

φ(x)dt

where

h(t,u,
.
x) =

1
2

u2+λ(t)
[.
x−1−u

]

φ(x) = −kx

Now the independent variable ist, and there are three dependent variables
x,u,λ.
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Plant growth: E-L equations

Three dependent variables, so three E-L equations

d
dt

∂h

∂.x +
∂h
∂x

= 0 (1)

d
dt

∂h

∂.u +
∂h
∂u

= 0 (2)

d
dt

∂h

∂
.
λ
+

∂h
∂λ

= 0 (3)

Notice thatdφ/dt is a constant, so it plays no part.

◮ h is linear in
.
x so equation (1) is degenerate

◮ equation (2) gives us the E-L equation we had before

◮ equation (3) just gives us back the constraint
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Plant growth: natural boundary cond.

Natural boundary conditions att1 = 1.

∂h

∂.x +
∂φ
∂x

∣

∣

∣

∣

t1

= 0

∂h

∂.u +
∂φ
∂u

∣

∣

∣

∣

t1

= 0

The second is trivial, i.e., 0= 0, so consider the first:

∂h

∂.x +
∂φ
∂x

= λ− k = 0

We already know from the E-L equations thatλ = u, andu = const, so the
end result is thatu = k.
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Plant growth solution

The solution isu = k, and so

x(1) = 1+ k

Whenk = 1 we get the same solution we got before, but that isn’t a
general rule.

Also the optimization objective will be

F{u,x}=−1− k+1.5k2

written in terms of profit we get

profit= 1+ k−1.5k2
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Plant growth solution

Another way to see how the end-point conditions work

◮ The E-L equations still apply

◮ Sou is still a constant

◮ x(1) = 1+u is the solution to the system DE

The height att1 = 1 would be 1+u and so the profit would be

F{u,x}= 1+ ku−
∫ 1

0

1
2

u2 dt = 1+ ku−
1
2

u2

Clearly, the maximum here occurs foru = k.
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Optimal Control

We will continue with optimal control later in the course when we have
considered a bit more theory, but consider the following problem:

Replace the previous plant growth problem by a similar problem,
but instead of a terminal cost (related to value of plant), weaim to
get the plants to height 2 in time that minimizes the cost.

Now t1 is also a free variable – how can we deal with this?
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Freeing up the independent variable

We can deal with both the optimal control problem and the collapsing
beam by freeing up the value of the dependent variable.
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