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Non-fixed end point
problems

What happens when we don't fix the end-points of an extrenmatRis
casenatural boundary conditions are automatically introduced, and
these can allow us to solve the E-L equations.
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Non-fixed end point problems

What happens when we don't fix the boundary points?

There are real problems like this, for instance

B a freely supported beam
end points fixed, but not derivatives

B a beam supported at only one end
one end point and derivative fixed, other free

B shortest path between two curves
end points lie of curves, but not fixed

B rocket changing between two orbits
end points lie on curves, and path is tangent
to the two orbits.

We then gehatural boundary conditions
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Free end points:
Fixedx, Freey and/ory

First we’'ll consider what happens when we allgwr y' to vary at the
end-points, but we still keep thevalues of the end-points fixed & and
X1.
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Example: freely supported beam

Freely supported beam

AL AL

For the beam problems considered before, we had to speeifydahvative
at the boundary, but here it can vary.

Variational Methods & Optimal Control: lecture 17 — 28/



Example: beam fixed at one end point

Beam fixed at one end point

0 d
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Perturbation again

We approach this the same way we did with all other variatipr@blems,
we perturb the curve and examine the First Variation, bgttilme, we
allow y(xg) andy(x;) to vary as well.
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Space of Perturbations

Now the spaceH of perturbations) contains functions whose valuext
andxy Is no longer zero.

g
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Same derivation of the first variation

Simple case wherg{y} = [.* f(x,y,y) dx

(x9.9) = oY)+ [ngf+ng;]+o< %)

PR = [ se [ iny)

s/X1 [r]af +n ay] dx+ O(g?)

o L 0Y
. Fy+eny—F
F(ny) = lim vy ns} W}

_ /Xllnaf naf]d
o | 0y oy’
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The first variation

As before, we can vary the sign afso forF{y} to be a local minima it
must be the case that

OF(n,y)=0, VneH

however, nowH allows curves with arbitrary end-points, so that
N(Xo) # 0, andn(xy) # 0 are possible.

Hence when we integrate by parts we get

SF(n,y) = [ﬂay] +/ [ay dx<g;’>]dx

X
But now the first tern’{r] %} "is not necessarily zero.
Xo
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The first variation

However,0F (n,y) = 0 for all n, which includes cases where
N(x) =nN(x1) = 0, and so the Euler-Lagrange equation must still be
satisfied for such and extremal.

Given the E-L equation is satisfied by an extremal, the camit
OF (n,y) = 0 next implies that

af 1™
ng,| =0
[ Y |,
and we can likewise choose curvgsuch that(Xp) = 0 andn(x;) =0,
or visa versa, so that we must have

ﬂ
oy

of
3y 0

X1

=0 and
Xo
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Euler-Lagrange again
Hence, as before, the extremal must satisfy the E-L equsation

d (of\ _af
dx \ oy oy

but now that the boundary conditions were not specified aopéne
problem, we get natural boundary conditions

of
oy

of

a—y/ _O

X1

=0 and
Xo

which specify that the derivative at the end-points will leea

Variational Methods & Optimal Control: lecture 17 — p.22/



Extensions (1)

What happens if we fix one end point, eygxo) = Yo.

The result is we cannot vary this end-point when perturbsiog(xy) = 0,
and therefore the condition
af 1™
—| =0
[” ay']

Xo
collapses to give just one extra condition

=0

X1

oy

Hence the boundary conditions aredular in the sense that when we
remove one, we replace it automatically with the naturalno@uy
condition.
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Extensions (i)

The above results can be extended as before, in particalasider a
functional containing higher order derivatives:

F{y}=/X1f(x,y,>/,>/’)dx

X0

of d of \1™ af 1™
OF(n,y) = [n(—,——,,)] +[r1’—,,]
ay dxay’ /|, oy
+/X1 of d of d? of dx
Xo oy dx oy’ r]dx26y”

where we see integration by parts introduces terms inctugliandn’.
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Extensions (i)

The Euler-Lagrange equations are

of d of +d_2ﬂ
oy dxoy dx2ay”

where the natural boundary conditions are

of d of of d of

—_ | = _ —0
o akoy'l, O M oy T way,
a—f” =0 and a—f” =0
ay” |, ay” |y,

where the first two replace absent conditions on the valyeabthe
end-points, and the second two replace absent conditiogsabithe end

points.
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Bent beam

Lety: |0,d] — IR describe the shape of the beam, and0,d| — IR be the
load per unit length on the beam.
For a bent elastic beam the potential energy from elastee®ois

d
vlzg / y2dx., K = flexural rigidity
0

The potential energy is
d
Vo = — [ p(xy(x) o
Thus the total potential energy is

d 12
V= [~ ey o
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Bent Beam: see earlier

The Euler-Lagrange equation is

of d of N d? of
oy dxoy dx2oy”
X

yo = P(X)

This DE has solution
Y(X) = P(X) 4 C3X° + C2X° + C1X + Co

where thecy’s are the constants of integration, afk) is a particular
solution toP¥ (x) = p(x) /K.
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Bent Beam: Example 1

Doubly clamped: see earlier lectures.

A

d

Two end-points are fixed, and clamped so that they are lexgl, e
y(0) =0,y (0) =0, andy(d) = 0 andy'(d) = 0.
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Bent Beam: Example 1

Doubly clamped: see earlier lectures.
Choose a solution of the form

Y(X) = p(dz_ 4)2 :

Then the derivative

~ 2p(d—x)x*  p(d—x)*x
y(x) = 1% 1x 0 d

We can see that the constraints are satisfied

y(0)=0 and y(d)=0
y(0)=0 and y(d)=0
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Bent Beam Example 2

Freely supported, uniform load
The natural constraints are

of

—| = KY'(X%)=0
ay// XO y,( )

of .

a—y” . = Ky (X1) =0

The fixed end-points arg0) = y(d) = 0, so uniform load solution looks
like
px(d®—2dx* +x3)
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Bent Beam Example 3

One end-point fixed, and clamped.
Called aCantilever

The natural constraints are
0f
a—y” X1 - Ky”(Xl) - O
of B d of _ E <y’
oy dxay’|,, X N\
0 d
= Ky"(x)=0

The clamped end-point introduces constrayi® = 0 andy'(0) = 0 so
the solution for uniform load is

 px?(6d* — 4dx+ x?) _ pd*
yix) = P and  y(d) =0
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Bent beam, end-points conditions

End-point conditions are modular: i.e., we can use diffeegnl-point
conditions at each end of the beam.
B clamped: specifies the position, and the derivative.

W freely supported: specifies the position. Natural boundary
condition is that the second derivative is zero at the endtpoi

B no condition: neither position, nor end-point are specified, so the
natural boundary conditions fix the second and third daveatat
the end point to be zero.
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Bent Beam Example 4

One end-point fixed, but not clamped.
In this case the beam just collapses, and lies vertical.

The approach doesn’t work, but this is a failure of thedel, not the
method.

In this case, the cantilever approximation (tkats fixed) no longer
works, and we need to consider a more general model thatstoto
vary as well.
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Intro to Optimal Control
(part I1)

Often in optimal control problems we may specify the inigate, but not
the final state. However, there may be a cost associatedatinal
state, and we include this in the functional to be minimizad (
maximized). We call this &rminal cost
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Optimal control with terminal costs
In an optimal control problem we again have a non-holonomrstraint

X(t) = g(t,x,u)

given initial statex(tp), but now the final state will be free and we wish to
minimize a functional
t

F{u} = o(t,x(t1)) + f(t,x,u)d

to

the termq(ty, X(ty)) is called theerminal cost.
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Terminal costs reformulation

Note that i g
(p(tlax(tl)) — (p(to,X(to)) T , &(p(t,X) d

SO we can rewrite
€]

F{u} = o(t,x(t1))+ [ f(t,x,u)ck

to
€]

= @(to,X(to)) + [f(t,x,u)+%(p(t,x)] ck

to

where note that the first term is fixed by the starting poindl, smwe can
drop it from the problem.
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Terminal costs: example

Imagine the problem we wish to solve is to minimize the time,ti. ,\We
could write this as a terminal cost problem, e.g. minimize

F{U} =11

Soq(t) =t, and%(p: 1 and therefore, we can write the minimum time
problem in the form

€]
F{u}=/ 1d

to
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Terminal costs and E-L equations

Given a problem like

t
F{u} = [f(t,x,u)+%cp(t,x)] ck
to
Note that
d op & 00.
G0 = 5+ 2 55

E-L equations:
dof of dop %@ ach

dtox,  Ow dtoxe oot 2oxdw
Eﬂ_ﬂ -
dta)'(k 00Xy B

Variational Methods & Optimal Control: lecture 17 — p.23/



Terminal costs and E-L equations

Hence terminal costs play no part in the Euler-Lagrangetampng which

makes sense
B fixed end-point problem

B terminal cost is fixed (by the end-point)

B so Euler-Lagrange equations unchanged
B free end-point problem

B Euler-Lagrange equations aren't effected by freeing up the
end-points

Variational Methods & Optimal Control: lecture 17 — p.29/



Terminal costs and boundary conditions

Terminal costs play no part in the Euler-Lagrange equatiomisfor
free-end points we get a new natural boundary condition:

B Take a functional written in the form:

F{x} :/: [f(t,x,k)+%cp(t,x)] d :/tlh(t,x,f()ct

to
® Natural boundary condition

oh of 0d of 0
— = - T = dip = T a(p =0
0X, t, X,  O0X, i, ox, — OX¢ —t,
where we use d 09 & 09,
&(p(t,x) T +i: ax
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Example: stimulated plant growth

Plant growth problem:

B market gardener wants to plants to grow as much as possithiawi
a fixed window of timety, t;] = [0, 1]

B supplement natural growth with lights as before

B growth rate dictatex = 1+ u
B cost of lights

1 1 5
F{u} :/ “u(t)?d
0o 2
B value of crop is proportional to the heighttat= 1

Ot X(t1)) = kx(1)
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Plant growth problem statement

Minimize (equivalent to maximizing the profit)

F{u,x} = —kx / —utd = /—u—

0,

Subject tax(0)
X=1+u

B note that the extra constantiwill not effect the E-L equations, so
the solution must still have the same form, iLe= const

B but the end conditions have changed
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Plant growth

Including the Lagrange multiplie¥(t) X — 1 —u|

H {u, x} :/01h(t,u,>'<)+%cp(x)ct

where

. 1
ht,u,Xx) = éuz

P(x) = —kx

+A(t) [Xx—1—u]

Now the independent variabletisand there are three dependent variables
X, U, A.
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Plant growth: E-L equations

Three dependent variables, so three E-L equations

dan
dt ox
dan
dt a0
d Oh
dt A

Notice thatdg/dt is a constant,

oh

ta. =0 (1)
oh

I 2
+55 0 (2)
ah

T = O )

so it plays no part.

B his linear inx so equation (1) is degenerate

B equation (2) gives us the

E-L equation we had before

B equation (3) just gives us back the constraint
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Plant growth: natural boundary cond.

Natural boundary conditions gt=1

oh do g
ox  Ox|,
oh acp _ 0
al au 4

The second is trivial, 1.e., & 0, so consider the first;

ahacp)\kO
aax

We already know from the E-L equations thAat u, andu = cong, so the
end result is thatl = k.
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Plant growth solution

The solution 1u =k, and so
X(1) =1+Kk

Whenk = 1 we get the same solution we got before, but that isn’t a
general rule.

Also the optimization objective will be
F{ux}=—1—k+1.5k’
written in terms of profit we get

profit=1+k — 1.5k
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Plant growth solution

Another way to see how the end-point conditions work
B The E-L equations still apply
M Souis still a constant
B X(1) = 1-+uis the solution to the system DE
The height at; = 1 would be 1+ u and so the profit would be

11 1
F{u,x}:1+ku—/ S =14 ku— A2
0o 2 2

Clearly, the maximum here occurs foe k.
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Optimal Control

We will continue with optimal control later in the course wh&e have
considered a bit more theory, but consider the followindofem:

Replace the previous plant growth problem by a similar proh|
but instead of a terminal cost (related to value of plant)ame to
get the plants to height 2 in time that minimizes the cost.

Now t; IS also a free variable — how can we deal with this?
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Freeing up the independent variable

We can deal with both the optimal control problem and theaguding
beam by freeing up the value of the dependent variable.
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