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Free end points:
Freex, y andy

We now allowx to vary as well, although we may apply some condition
on the relationship betweerandy, for instance that the end point must

lie on a curve. In these cases we often rename our extrennal€all
themtransver sals.
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Free end points

In previous problem, we allow(xy) andy(x;) to vary but kept, andx;
fixed.

y ) ¢

Variational Methods & Optimal Control: lecture 18 — 23/



Example: Cantilever

N
0

d
But this can fail in some cases, for instance, if the left ehithe cantilever

Isn’t clamped (to have zero slope) then the right end cangfeely, and
X1 won't be fixed.
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Free end points

In some problems we even want to allagvandx; to vary.
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Example: shortest path

There may still be some constraints on the possible positidn
end-points: e.g., shortest path between two curves
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Example: Orbit Transfer Problem

final orbit _..-

nifial
orbit
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Approach
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Extension ofy

Definexy = min(Xg, Xo) andxXy = max(Xy, %)

We can use Taylor’s theorem to extepndnto the intervalX, X1, €.9.
[ y(X) if X € [Xo,X4]
Y(¥) = < Y(xa) + (X=x0)y (%) + EZLY" (1) +---if XE (%0, %]
| Y(X0) + (%0 —X)Y (X0) + 2Ly (x0) + -+ if X € [Ro, %)

For instance, if the perturbed end-poxgt< Xy, we get
y(Xo) = Y(X) — €XoY (Xo) + O(€?)

We can likewise extend the perturbed cuyve ~
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Extension ofy

A ' """""""
€Y, _
en(Xo)
| .
}
Yl ,
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Distance

However, we can no longer define distance as simply
B previous definition d(y,9) = lly—9|

where the norm could be defined in a number of ways, but an
example might be

=9l =/ Iye) — 900 dx

X0

B Xo andx; can vary now, so the range of integral is not well defined
anymore

m if we just extendy to new interval, we don'’t take proper account of
distortion from difference irx end-points
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New distance

New distance metric

d(y,y¥) = [[y—V¥I|| + |Po — Po| + |P1 — P1]

where we define

Pk = Pl = v/ (%= K2+ (Y — Ph)?

We want allowed perturbations to be close/t@ccording to the distance
defined above), but don’t specify the end-points exceptdaire they be
O(g) apart, e.g. R = Xe+EX

Ve = Yk+&Y

so that/pkx — pk| = e\/sz +VY2, fork=0,1
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Forming the first variation

F R = o [ty o

X1+€Xq

X1
- F(c9,9) dx— [ flxyy)ax
Xo+£€Xo Xo
X1

_ f(x,9,¥)—f(xy,y)dx

&

X1+€X1 Xo+€Xo
_|_/ f(X)S}jS}’) dX—/ f(X’S\/757,> dX
X1

X0
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Forming the first variation

From earlier arguments

X1

X1 o of
/ f(Xayay,)_f(Xayay,)dXZS r]_,
X0 oy

+/Xl of _dot dx
xor] oy dxoy

X0

and as is small

X1+E€X1 R 5
/ f(x¥,¥)dx eX1 F(X YY)y, +O(7)

X1

[T ) = £ Tyl + O

X0
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Forming the first variation

Therefore the first variation is

of 1™  /of d of
e - ()

X0

—I'Xl f(xvyvyl)‘xl _XO f(xvyvyl)‘xo —|—O(€)

X
But note that[r] %} “is no longer simple to calculate because we don’t fix

Xo
Xo Or X.
B how can we learxy andx;?
B we need a new natural boundary condition that will give us.thi
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End-point compatibility

The perturbed end-points, and perturbation functjonust satisfy certain
conditions to be compatible.

€Y11

----- CoFp y+en
€Y,
1 """""""" S (X0:Y0)

: _

. ex, *
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End-point compatibility

The perturbed end-points, and perturbation functjonust satisfy certain
conditions to be compatible.

-- .o om
---_---" -5
' -

A[ =
£Y, |
€N (Xo) :
1 I e
A
-eXoy" .
vyl ( -7
Z >.
- > X
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End-point compatibility

Remember that
Xo = Xo+E&Xg
Yo = Yot+E&Yo

Notice that
Yo = Y(Xo) = Y(Xo +€Xo) = Y(Xo +€Xo) +€N(X0 +€Xop)

From Taylor’s theorem, for smadl

Y(Xo+EX0) = Y(Xo)+EXoY (Xo) +O(€?)
= Yo+&Xoy (Xo) +O(€%)
en(Xo+eXo) = en(xo)+O(e%)
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End-point compatibility

So
Yo+€&Y0 = Yo+eXoY (Xo)+eN(Xo)+O(e?)
eYo = eXoy (Xo)+€n(xo) +O(?)
N(x) = Yo—XoY(X)+O(¢)
Similarly

N(x1) = Yi—Xyy(x1)+O(e)
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The First Variation

Substituting the end-point compatibility constraintitte first variation

we get
of X1+/X1 af_daf dx
r]ay’ Xo { oy dxoy

X0

_|_X1 f(xayay/>|x1 _XO f(xayay/>|xo +O(£>

} /xl of _dafy .
B xor] dy dxoy

oF(n,Y)

of of
+Y1 —| —Yo
Yy |y, Yy |y,
of of
o (12| o (1-v2)| ot
1 y,ay/ y y,ay/ XO ()
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Deriving Euler-Lagrange equations

The end-points are free, but this includes the case wheyesthen the
extremal, i.e. we can alway$fioosahe end-points so tha§ = Yx = 0, for
k=0,1. For instance, wheKy; = X; = Y; =Y, = 0, then the first variation

collapses to
. /of d of
F — —
oF(n.Y) /xo i <0y dxay’> o

And so the E-L equations hold here.

Likewise, whenX; =Y; =Y, =0, butXy £ 0 we can see that this creates
one of the natural boundary condition

X0
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Notation

Some notation
B Hamiltonian
Hoyot
oy
we saw the Hamiltoniahll earlier.

m pis often identified with momentum of a particle, but we canitise
for other systems as well.

ot
p_ay/

B we’'ll replace the notation¥, andYy for k = 0,1 with
OX(Xk) =X and dy(yk) = Yk
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The Euler-Lagrange equations

As before, we can always choose the end-points sodhatYy = 0, for
k=0,1, so that the Euler-Lagrange equation

of _doaf
dy dxoy

must be satisfied plus the additional constraints:

[péy— HBX]: =0

Variational Methods & Optimal Control: lecture 18 — p.22/



Including constraints

Typically the end-points satisfy some set of constraimts$he most
general forng(xo, Yo, X1, Y1) = 0, but often these constraints separate to
constraint a single end-point, e.g. we have constraints

gk(Xj,Yj> =0
for | = 0,1, and some number of constraints, typicdliy 4.

For example, the fixed end-point problem has constraintsgrecify the
values of(Xg, Yo) and(xs,y1) precisely.
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Separable constraints

Where the constraints for one end point are not linked togludshe
other, we may separate the conditions to get

POy — HOX = 0

POy — HOX = 0

Note not all possible end constraints make sense!
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Simple example: fixed

We have already considered this condition:
W OoXx=0anddy+#0

®m conditions
POy — HoX = 0
reduce down to N
P= dy y =0

at the relevant end points.
M that is just the natural boundary conditions we derived@&arl
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Simple example: fixeg

Imagine a problem where we have to get to a fixed stabeit the point at
which that happens is variable, so that

moy=0anddx#0
B conditions

POy — HOX 0

X

reduce down to

at the relevant end points.
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Simple example: fixeg

Minimise "
F{y} :/ 1-+y2dx
0

subject toy(0) =1 andy(x;) = L > 1, but withx; unspecified.

® \We could derive the E-L equations, but note that this prokbgem
autonomous (n& dependence) so

H = const

B The free end point at; means that

H =0

X1

m Hence for allx € [0, x;] we haveH =0
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Simple example: fixeg

Minimise

So

Hence

X1
F{y}zfo 1+y?dx
H :yg—yf,_fzzyz_yz_1:y2_1:o

y =41

subject toy(0) =1 andy(x;) =L > 1 sowe take/ =1

y=x+1
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Extension to several dep. var.s

F{a} = t1L(t,q,<'1>dt

to

If F is stationary ag then it can be shown that the Euler-Lagrange

equations
doL oL

=0
dt aqk 00Kk
fork=1,...,nand that at the end pointgandt;
: oL n
Z PkOgx — HOt = O wherepy = — andH = Z G, Pk — L
k=1 e =1
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Simple Example

Find extremals of
L , 5
F{CI} — L (Ch“l‘(qz—l) —|—q1—|—CI1CI2) dt

for q(0) = gqo andq(1) free, i.e., we can finish anywhere on the plane
t=1.

The Euler-Lagrange equations are

24, — 201 — O

20,—01
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Simple example

As earlier we can combine the E-L equations to get

4q,Y — 44, - =0
which has solutions in the form

O (t) = creM' 4 8%t 4 czcogmt) + ¢4 sin(mt)

where
— _ i
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Simple example

Natural boundary conditions

n
Z pkéqk — Hot =0
k=1 t=1

butt = 1 is fixed at the RHS, sat = 0, and we can vargy independently,
so we can take any combinationafy = 0, and hence all of thp, = 0 at
t=1,1l.e.,

oL
= = O
pk‘t_l 36,
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Simple example

oL
= = O
pk‘t_l 36,

So
P1 = 2(.:]1 =0
P = 2(3,—-1)=0
The natural boundary conditions reduce to
ql = 0
QQ —

Combine with the conditions at the start point we have enaagistraints
to find the constants of integration.
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