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Transversals
When we consider an extremal joining a curve to a point (or twocurves)
then we often call the extremal a transversal. The free-end-point condition
simplifies in many such cases, for instance, in many situations we look for
a transversal that joins the proscribed curve at right angles.
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Transversal examples

Find the shortest path between two
curves
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Find the shortest path from a point
(x0,y0) to a curveΓ.
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Transversals

Specify the curveΓ parametrically by(xΓ(ξ),yΓ(ξ)), then the end-points
must lie on this line, and so we can write

δx = δξ
dxΓ

dξ

δy = δξ
dyΓ

dξ

and then the condition is
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Transversal condition

Note that the vector( dxΓ
dξ ,

dyΓ
dξ ) is a tangent to the curveΓ.

TheTransversality Condition is that the vectorv = (−H, p) is
orthogonal to the tangent vector.

i.e.
(

dxΓ

dξ
,
dyΓ

dξ

)

· (−H, p) = p
dyΓ

dξ
−H

dxΓ

dξ
= 0
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Transversals

Find the shortest path between two
curves
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Find the shortest path from a point
(x0,y0) to a curveΓ.
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Example 1

Shortest path from the origin to a curverΓ = (xΓ(ξ),yΓ(ξ)). The path
length is given by

F{y}=
∫ x1

0

√

1+ y′2 dx

Then

p =
∂ f
∂y′

=
y′

√

1+ y′2

H = y′
∂ f
∂y′

− f =
y′2

√

1+ y′2
−
√

1+ y′2 =
−1

√

1+ y′2
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Example 1

Thus the transversality condition becomes

p
dyΓ

dξ
−H

dxΓ

dξ
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∣
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= 0

y′
√

1+ y′2
dyΓ

dξ
+

1
√

1+ y′2
dxΓ

dξ
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∣
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∣
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Now
√

1+ y′2 6= 0, so we can multiply through by
√

1+ y′2 to give

dxΓ

dξ
+ y′

dyΓ

dξ

∣

∣

∣

∣
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= 0

Alternatively stated,( dxΓ
dξ ,

dyΓ
dξ ) · (1,y

′) = 0
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Example 1

We can interpret( dxΓ
dξ ,

dyΓ
dξ ) · (1,y

′) = 0 geometrically
◮ the condition means that the tangent to the extremal must be

orthogonal to the tangent to the curveΓ where they connect.

◮ E-L equations still implyy(x) will be straight line

◮ this makes perfect sense!
⊲ find the distance of curveΓ from the origin.
⊲ do this by creating expanding circles, and the one that touched

the curve would give us the distance.
⊲ it would touch so the circle was tangent
⊲ the (straight line) radius would be perpendicular to the tangent.
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Example 1
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Example 1

Sometimes, there will be many possible solutions, for instance if the curve
Γ was a circle around the origin!. But now we know how to find them, it
would be easy.
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Example 2

Consider the general functional

F{y}=
∫ x1

0
K(x,y)

√

1+ y′2 dx

for which we wish to find stationary paths between two curves
rΓ0 = (xΓ0(ξ),yΓ0(ξ)), andrΓ1 = (xΓ1(ξ),yΓ1(ξ)). The path length is given
by Then

p =
∂ f
∂y′

=
y′K(x,y)
√

1+ y′2

H = y′
∂ f
∂y′

− f =
y′2K(x,y)
√

1+ y′2
−K(x,y)

√

1+ y′2 =
−K(x,y)
√

1+ y′2
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Example 2

Once again the transversality conditions at each end will revert to the
extremal being orthogonal to the tangent to the curves at either end.

However, in this case, the curve joining the two could be distorted by the
factor ofK(x,y) so that it is no longer a straight line. Its shape can be
determined from the E-L equations.
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Example 3

Find the shape of a fixed length chain hanging between two curves
(similar to catenary problem, but end-points can move freely along two
curves).
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Example 3

This problem is a special case of Example 2, and so
◮ from transversality constraints that the chain will join the two curves

at a right angle.

◮ E-L equations imply the curve will be a catenary (see earlier
lectures for the derivation of the catenary)

y(x)+λ = c1 cosh

(

x− c2

c1

)

◮ we need simply to use the perpendicularity (and fixed length)
constraints to derive the values of the constant of integration, and
the Lagrange multiplier.
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Example 4

A variant of the Brachystochrone: find the curve of fastest descent from a
point to line.

T{y}=
∫ x1

x0

√

1+ y′2
√

2E
m −2gy(x)

dx =
∫ x1

x0

K(y)
√

1+ y′2 dx

◮ E-L equations show that the curve must be a cycloid

◮ Transversality constraints (see Example 2) show that, at the point of
contact, the extremal will be perpendicular to the line.
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Example 4
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Example 5

Shortest path from a point to a surface.

◮ E-L equations show that the curve must be a straight line

◮ Transversality constraints show that, at the point of contact, the
extremal will be normal to the surface.
(see CE 5 solutions for an example that shows this).
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