Variational Methods &
Optimal Control

lecture 19

Matthew Roughan
<mat t hew. r oughan@adel ai de. edu. au>

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Variational Methods & Optimal Control: lecture 19 — 222/



Transversals

When we consider an extremal joining a curve to a point (ord¢wwes)
then we often call the extremal a transversal. The freepemdt condition
simplifies in many such cases, for instance, in many sitnatwee look for
a transversal that joins the proscribed curve at right angle
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Transversal examples

nd the shortest path between two Find the shortest path from a point
Irves (Xo,Y0) to @ curve.
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Transversals

Specify the curvé parametrically by(x-(&),yr(&)), then the end-points
must lie on this line, and so we can write

er
OX = EEd—E
o dyr
oy = & iR
and then the condition is
POy — H X = 0
X1
dyr dxr
— —H— = 0
Pag T " de |,
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Transversal condition

Note that the vecto(%ig, %ig) IS a tangent to the cunie

TheTransversality Condition is that the vectov = (—H, p) is
orthogonal to the tangent vector.

l.e.

er dyr o dyr er o
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Transversals

nd the shortest path between two Find the shortest path from a point

Irves
[o o
A
B
dyr dxr
o H 0 — O
Pae T de |,
dyr dxr
1 H 1 — O
PTae T e |,

(Xo,Y0) to a curve.

)
:
(X0,Yo)
7
dyr dxr
“T_H=T| =0
Pag T " de |,

Variational Methods & Optimal Control: lecture 19 — 28/



Example 1

Shortest path from the origin to a curke= (xr(&),yr(§)). The path

length is given by
X1
F{y} :/o V1+y?2dx

Then
o — of B y
oy  \/1l+y?
of y’2 -1
H = — —f = —\/14+V2=
y,ay/ ‘/1_|_y/2 y 1_|_y/2
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Example 1

Thus the transversality condition becomes

dyr dxr
e AN Rt I S
Pag T de |,
y  dyr N 1 dxr _ 0
/1_|_y/2 dé /1_|_y/2 d .

Now /1+Yy? # 0, so we can multiply through by/1-+y? to give

%—Fy,% — 0

dg |y,

Alternatively stated($¢, D) - (1y) =0
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Example 1

We can mterpre(%lXr : ‘Lyr) (1,y') = 0 geometrically

m the condltlon means that the tangent to the extremal must be
orthogonal to the tangent to the cuilvavhere they connect.

B E-L equations still implyy(x) will be straight line

B this makes perfect sense! o
m find the distance of curvie from the origin.

B do this by creating expanding circles, and the one that ®aich
the curve would give us the distance.

® it would touch so the circle was tangent
B the (straight line) radius would be perpendicular to theéam.
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Example 1

YA

|

(XO ’yO)
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Example 1

Sometimes, there will be many possible solutions, for mstaf the curve
[ was a circle around the origin!. But now we know how to find thém
would be easy.
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Example 2

Consider the general functional

Fivh= [ Ky VITy2ok

for which we wish to find stationary paths between two curves

rro = (Xro(&),Yr,(&)), andrr, = (X, (&),yr,(&)). The path length is given
by Then

of  yK(xy)

b= o \/1+y?

of K (x —K(x
H — y/_/_f:y ( 7y)—K(X,y)\/Fy/2: ( 7y)
ay 1—|—y/2 1_|_y/2
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Example 2

Once again the transversality conditions at each end wdirt¢o the
extremal being orthogonal to the tangent to the curves la¢iegnd.

However, in this case, the curve joining the two could beadistd by the
factor ofK(x,y) so that it is no longer a straight line. Its shape can be
determined from the E-L equations.
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Example 3

Find the shape of a fixed length chain hanging between twgesurv
(similar to catenary problem, but end-points can move yrang two

curves).

r
o r1
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Example 3

This problem is a special case of Example 2, and so
B from transversality constraints that the chain will joile o curves
at a right angle.

B E-L equations imply the curve will be a catenary (see earlier
lectures for the derivation of the catenary)

Y(X)+A=0Cy cosh(xg Cz)
1

B we need simply to use the perpendicularity (and fixed length)
constraints to derive the values of the constant of intemraand
the Lagrange multiplier.
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Example 4

A variant of the Brachystochrone: find the curve of fastestdat from a
point to line.

T{y}=/X1 1+y° dx:/X1K(Y)\/1+y’2dx

X\ /2 —2gy(x) X0

B E-L equations show that the curve must be a cycloid

B Transversality constraints (see Example 2) show thategbdimt of
contact, the extremal will be perpendicular to the line.
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Example 4
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Example 5

Shortest path from a point to a surface.

B E-L equations show that the curve must be a straight line

B Transversality constraints show that, at the point of ccntae
extremal will be normal to the surface.
(see CE 5 solutions for an example that shows this).
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