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Example: parking a car

Classic problem: from Craggs, p.55

We want to drive a car/tank from poiAtto pointB as quickly
as possible, and at poiBtthe car should be stationary.
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Inequality Constraints
and Optimal Control

Earlier we didn’t consider inequalities as constraints,thase are needed
particularly in control. For instance, often there is a mawxin force we
can apply to an object. The resulting extremals either (i¥&ethe E-L
eqguations, or (ii) lie along the edge of the constraint. Ve glet
boundary conditions between these two types of regions.
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Example

Parking a car seems like a trivial problem:
» in fact this problem appears in other contexts, e.g.
> automatic positioning of components on a circuit board
> has to be done frequently (so has to be fast)
> speed limited by robot, and how delicate the components are
» shortest-time problems are a case of a more general typ®loligon
as well.
» further, this type of controller appears often
> we can make some general statements about when a bang-bang
controller is a good idea

Variational Methods & Optimal Control: lecture 21 — p.4/38




Example

p: // www. expo21xx. conl aut omati on77/ news/ 2085_r obot _mi t subi shi/news_defaul t. htm

Variational Methods & Optimal Control: lecture 21 — p.5/38

Example: parking a car

As before, note(t) = dx/dt is the car’s velocity, so we can write

B Xs 1
T = [ a= [T
A XA X

We wish to maximize this extremal, subject to the DE constriat

_u®
m
whereu(t) is the control (force) that we exert, and also subject to
X(0)=x(T)=0

i.e., the car is stationary at the start and finish.
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Example: parking a car

We want to drive a car/tank from poiAtto pointB as quickly
as possible, and at poiBtthe car should be stationary.

Newton’s law
force=u=m¥X

Choose forcel that minimizes the time subjectfo= 0 att =0 andt =T,
whereT is not specified, but rather given by

T{u}:/ABd

and it is this functional we wish to minimize.
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Example: parking a car

Takey = X, and we can rewrite the problem as minimize

- ffa- [T

We wish to minimize this extremal, subject to the DE constrtiat

_u)
- m
whereu(t) is the control (force) that we exert, and also subject to

y(Xa) =y(xg) =0
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http://www.expo21xx.com/automation77/news/2085_robot_mitsubishi/news_default.htm

Example: parking a car

Including the nhon-holonomic constraint into the probleringsa
Lagrange multiplier we get

H{y,u}:/f)—llﬂ (y—%)) o

subject to
y(%a) =Y(xg) =0
The E-L equations are

dtay oy _ °
doh_oh
dtod ou
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Example: parking a car

E-L solutions:
» solutions arg/ = +oo
» this requiress = £ at some points in time
» butin reality we can’t exert infinite force

> i.e., force is bounded
|U| < Umax

» need to consider optimizing functionals with inequalitystraints.

> similar (in some respects) to min/max functions with indigya
constraints

> min/max is in the interior, or on the boundary
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Example: parking a car

d 1
Ao
m

From the second equatian= 0, and so we see that
So the only viable solutionsarey = +o
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Inequality constraints

We have considered problems with

» integral constraints (Dido’s problem)
» holonomic constraints (geodesics formulation)
» non-holonomic constraints (problems with higher derixed)

But we have not considered inequality constraints
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A problem

What is the shortest path, betwegmandB, avoiding an obstacle

E.G. what is the shortest path around a lake?
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Formulation

We have slack functior(x), and constraing(x) > g(x) and

y = Z+g
y = 2Z+¢d

Substitute these into the functional and we can change thmal
functionalF {y} for a new one in terms d¥{z}

Fly} = /Xff(x,y,y)dx

F{zd = /):lf(x,zerg,Zzz’Jrg’)dx
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Formulation

Find extremals of

F{y}z/lef(x,y,y)dx

subject toy(0) = yp andy(1) = y; and
y(x) > g(x)

Enforce the constraint by taking

y(x) = g(x) +2(x)?

In other words introduce a “slack functioa(x), and note that
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Euler-Lagrange equations

Given we look for the extremals of
X:
F{z} :/ f(x, 249,227 +g) K
Xo

the Euler-Lagrange equations are

dot ot
dxoz o0z
d of of of
d of of of of
ZZ&WJFZZlW_ZZO_y_ZiW =0
J[dot of) _
dxoy oay|
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Euler-Lagrange equations

The Euler-Lagrange equations give

[d of 61
Z|l— — — =

for which there are two solutions
» Euler areas: The E-L equations are satisfied

» Boundary areas. z(x) = 0, soy(x) = g(x) and the curve lies on the
boundary.

Analogy: a global minima of function on an interval can happée
stationary point, or at the edges.
But we can mix the two along the curye
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Example

Given the conditions, the solution must look like

(A
”,

AN _

,,,,,,,,,,,,,,,,,,,,,,,,,,, 228

\\\\\‘

i.e. straight lines joining the end-points to a circular,avhereP, the
point of intersection of the right-hand straight line, ahd tircle is at
(acosh,asing).

2
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Example

Find the shortest path around a circular lake (radiusentered at the
origin), between the pointd, 0) and (~b,0) (for b > a).
The conditions are

» Euler areas: The E-L equations are satisfied, so the curve is a
straight line.

» Boundary areas. z(x) = 0, soy(x) = g(x) and the curve lies on the
boundary of the circle.

We can mix the two along the curye
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Example

The total distance of such a line is

d@) = 2,/(b—acosd)?+asir?0-+a(m—26)

= 2y/b?—2abcosH+ a2+ a(Ti— 26)
We find the minimum ofi(6), by differentiating WRT®, to get

4 - 2absind o
Vb2 — 2abcosh + a2

=0

So

2absin® = 2a\/b? — 2abcosd + a2
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Example

Dividing both sides by & we get the condition

bsin@ = +/b2— 2abcosd+ a2
b?sif® = b®—2abcosd+ a?
b?—b?cof® = b?—2abcosd+a’
0 = b?cos8—2abcosd+ a?
0 = (bcos—a)?

So the result is
cosB=a/b
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General result

If fy depends oy, then at the point where the extremal transfers from the
Euler-Lagrange curve to the domain boundary the tangeras/ar
continuously.

The problem is similar to that of the broken extremal. Hdne,lireak is
imposed by the change from one solution to the other (Eudgrange to
domain boundary). However, the condition can be seen ingdimeavay,
e.g. by perturbing the possible corner, along the boundary.
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Example: solution

Ns

...... A

Think of what we would get if we stretch an elastic band betwtbe two
points.
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General result: proof

A

y

yx)

% T e
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General result: proof
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General result: proof

The first component of the first variation is, as with transeaés, and
corners conditions,

iy = 3| [ e [ i

And as with corners, we get an integral term which resulte@E-L
equation, plus the additional constraint

[péy— Héx] T [péy— Héx} = 0
where of

of
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General result: proof

Similarly to the Weierstrass-Erdman Corner Condition®frave break
the integral into two parts:

F} =Rl Rl = [ Toy)oe [ o) o

but we will assume the shape of the curve on the RHS difs the
boundary, e.gy(x) = g(x), and the LHS follows the E-L equations

Fh =Rl R = [ xy)oe [ fixa.g)ox
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General result: proof

As with other potential corners, we get a corner condition
[péy—HBx] — [péy—HE)x} =0
X+ X+t

but note that curvg(x*) = g(x*), which constrains the end-point, so we
cannot consider arbitrary variatio(d, dy). In fact, we can only consider
variations where

dy = g'dx

Assuming thatlg/dx is in fact defined the above is

[pg’éx— Héx] T [pg’éx— Héx} = 0
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General result: proof

The condition
[pg’éx— Héx] - [pg’éx— Héx} =0
X X+t
which can be simplified to

-] [+ o

x*t

SubstitutingH andp, andy = ¢’ on the RHS of* we get

of of of  of
(O ot o ,or _
{g oy Yoyt f]x* {g ay Yoyt f]w 0
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General result: proof

Takingaxy(Y) = f(x,y,y') where
» on the left side ok*, we havey’ determined by E-L equations
» on the right side ok* we havey = ¢

So

[f]x** - [f]x*+ = XL”)'(Di f(X,y,}/) _XLIQ;LL f(x,9.9)
= Oey [Y(X)] = ey [9(X)]
Given its all the same, | won't keep writing the subscriptsjoind will
just use

a(2) = gy (2)
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General result: proof

Simplifying we get

[(g’—Y)% - fL +[fle =0
or
(@G| (e e =0

» Consider the term-{[f],.. —[f].. }

» Note that at the “join’y(x*) = g(x*), so if the two limits off differ
it is because of a difference yon either side of the join

» Treatf as a function of jusy, i.e, f(X,y,Y) = xy(Y)
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General result: proof

The Mean Value Theorem statéfa function q(z) is continuous on the
closed interval [a, b] and differentiable on the open interval (a,b), then
there existsa point cin (a, b) such that

q(b) —q(a) = (b—a)q'(c)

So we get

[l —[fler = ay(x))—a(d(x))
= Y(X)-dx)]d(c)

for somec betweerg'(x*) andy’(x*)
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General result: proof

Takingq(y) = f(x,y,y) we get
d of

d—ZCI(Z) = W(XJ,)/) yes
So
o Of
(c) = W(X ,Y',C)
and hence
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General result: proof

(g106) =Y 0) (X300 66) = Fx.3().0) ) =0
So there are two possibilities:
» g (x*) =Yy (x*), which means that meets the boundary at a tangent
to the boundary.
> %(x, v.Y)— %(x, y,c) = 0. This latter condition holds Whegfy is
constant with respect g, i.e.,
2
LI
ay’?

In the lake examplegzvf2 #£0
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General result: proof

So the condition from before can be rewritten as follows:

[(@J’—)/)%—f]ﬂJr[f]x,ﬁ+ = 0
(@) (G ) - ewe))| = 0

for somec betweery'(x*) andy’(x*)
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Example: parking a car

» Reuvisit the problem of parking a car.
» If we think about the problem, it makes no sense unless tkere i
maximum forceumax.
> otherwise we move frorA to B arbitrarily fast.
» There are no valid E-L equation solutions.
» We must end-up in the boundary domain, @lg= +Unax

> obvious solution is to accelerate as fast as possible uatiet
half-way, and then to decelerate as fast as possible.

of o
> a0 =0, so we don’t have to stress about continuitys(not
u

continuous either)
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Example: parking a car

» Our solution is in the boundary domain, elw= +Unax

A

Umax |

velocity

Uma| o e

» called abang-bang controller
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Bang-bang controllers

Bang-bang controllers appear in a number of other contartswe will
consider them in more generality later.
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