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More Optimal Control
Examples

First we’ll cover a bit more terminology, and then some examples
primarily focussed on planned growth strategies in economics.
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Formulation of control problems

We break a control problem into two parts
The system state: x(t) = (x1(t), . . . ,xn(t))t

The system state describes the system (e.g. position and velocity of
the car in car parking example)

The control: u(t) = (u1(t), . . . ,um(t))t

We apply the control to the system (e.g. force applied to the car).
The evolution of the system is governed by the set of DEs

.
x(t) = g(t,x,u)

In a control problem we want to get the system to a particular statex(t1) at
time t1, given initial statex(t0).
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Optimal control problems

In anoptimal control problem we have still have the system equations.
x(t) = g(t,x,u) and we might wish to get to statex(t1) given initial state
x(t0), but now we wish to do so while minimizing a functional

F{x,u}=
∫ t1

t0
f (t,x,u)dt

That is, we wish to choose a functionu(t) which minimizes the functional
F{x,u}, while satisfying the end-point conditionsx(t0) = x0 and

x(t1) = x1, and the non-holonomic constraints
.
x(t) = g(t,x,u).
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Optimal control problems

Optimization functional

F{x,u}=
∫ t1

t0
f (t,x,u)dt

Note that

f (t,x,u) has no dependence on
.
u: this is typically because costs

depend on the control, not how we change the control, but there
might be counter-examples

f (t,x,u) has no dependence on
.
x: this is common in control

problems, but not universal (we have seen at least one counter
example).
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Terminal costs

Sometimes in optimal control we don’t fix the end-pointx(t1), but rather
we assign a costφ(t1,x(t1)) to particular end-points.

So now we wish to choose a controlu(t) which minimizes the functional

F{x,u}= φ(t1,x(t1))+
∫ t1

t0
f (t,x,u)dt

while satisfying the single end-point conditionx(t0) = x0, and the

non-holonomic constraint
.
x(t) = g(t,x,u).

φ(t1,x(t1)) is called theterminal cost.
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System Terminology

linear: the state equations are a set of linear DEs.

autonomous: time doesn’t appear explicitly in the state equations
(e.g. ing(x,u), or f (x,u)).

also called time-invariant

terminal cost: the termφ(t1,x(t1)) is called the terminal cost.

controllable: a solution to the control problem exists.

stable: a stable equilibrium solution to the system DEs exists.
often we are interested in problems that are unstable, or we
wouldn’t really need a control
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Control Terminology

control (driver or automatic)
planned (open loop)
feedback (closed loop) control depends on current state

type of control
movement fromA to B
continuous operations (maintain equilibrium)

type of cost functionalF
minimum time
minimum fuel
quadratic costs

admissible controls
unbounded/bounded/bang-bang
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Cost functional examples

minimum time: choose the fastest possible control

F{x,u}=
∫ t1

t0
dt

minimum fuel: fuel is expended by the controller, and we wish to
minimize this

F{x,u}=
∫ t1

t0
|u(t)|dt

quadratic costs:

F{x,u}=
∫ t1

t0
x2(t)+αu2(t)dt
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Boundary conditions

End timet1: can be fixed or free

End positionx(t1): can be fixed or free

In the cases with free boundary conditions, we introduce natural, or
transversal boundary conditions.
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Example: dynamic production

A producer in purely competitive market
A large numbers of independent producers
Standardized product, e.g. potatoes
Firms are ”price takers”, i.e. they have no significant control
over product price
Free entry and exit
Free flow of information

wants to find optimal production pathx(t), 0≤ t ≤ T.

production targetx(T) = xT

profit at timet is π(x,.x, t)
maximize profit functionalF{x}=

∫ T
0 π(x,.x, t)dt
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Example: dynamic production

Profit calculation

quadratic production costsC1 = a1x2+b1x+c1

labor
raw materials

production increase costsC2 = a2
.
x

2
+b2

.
x+c2

new buildings
recruiting and training costs

revenuer = px wherep is the constant price per unit
p= constdue to purely competitive market

profit at timet is

π(x,.x, t) = px−C1(x)−C2(
.
x)
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Example: dynamic production

Problem formulation: maximize total profit

F{x}=
∫ T

0
px−C1(x)−C2(

.
x)dt

subject tox(0) = 0 andx(T) = xT .

notice that the control, and rate of change of state are the same (i.e.,
u=

.
x) but we write it as above for simplicity

autonomous problem

the control is planned, and has quadratic costs

admissible controls are unbounded
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Example: dynamic production

Euler-Lagrange equations

d
dt

∂π
∂.x −

∂π
∂x

= 0

−
d
dt

∂C2

∂.x − p+
∂C1

∂x
= 0

−
d
dt

[

2a2
.
x+b2

]

− p+2a1x+b1 = 0

−2a2
..
x − p+2a1x+b1 = 0

..
x −

a1

a2
x =

−p+b1

2a2

for a2 6= 0
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Example: dynamic production

Solution (fora1,a2 6= 0)

x(t) = Ae
√

a1
a2

t
+Be

−
√

a1
a2

t
+

b1− p
2a2

whereA andB are determined by the fixed end pointsx(0) = x0 and
x(T) = XT .

This gives the optimal production schedule.
no dependence onc1 or c2 (these are constant costs and so shouldn’t
effect production strategy)

no dependence onb2 because this is a linear cost in increasing
production, and so occurs regardless of how we increase overtime
(to get to the final production targetx(T) = XT).
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Example: dynamic production

What happens if we make the end pointx(T) free, i.e. we don’t have a
production target at timeT?

Then we get a natural boundary condition

∂π
∂.x
∣

∣

∣

∣

t=T

=
∂C2

∂.x
∣

∣

∣

∣

t=T

= 2a2
.
x+b2

∣

∣

t=T
= 0

So, rearranging, we get
.
x(T) =−

b2

2a2

constantsA andB are determined by end-point conditionsx(0) = x0

and
.
x(T) =− b2

2a2
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Example: dynamic production

production costsC1 = x2+5x

production increase costs

C2 = 2
.
x

2
+5

.
x

p= 10

T = 1

x0 = 0, xT = 1
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x(T)=1
free end point
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Example: optimal economic growth

How much should be consumed, and how much invested for future
consumption?

optimal theory of saving (Ramsey, 1928)

Total capital at timet is K(t)

Total population (labor force)L(t), which grows at exogenous rate

n, e.g.
.
L = nL

Homogeneous quantity called GDP denotedY(t)

GDP can either be consumedC(t) or invested to get
.
K(t), or used to

replace depreciated capitalµK(t).

Y(t) =C(t)+
.
K(t)+µK(t)
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Example: optimal economic growth

GDPY(t) is a function of laborL(t), and capitalK(t)

The production functionY(t) = f2(K,L) is homogeneous of degree
one, e.g.

Y(t) = L(t) f2(K/L,1) = L(t) f (K/L)

Hence we normalize all quantities by populationL

y = Y/L GDP per capita

k = K/L Capital investment per capita

c = C/L Consumption per capita

and writey(t) = f (k) where f is assumed to be a strictly concave,
monotonically increasing function, with slope decreasingfrom ∞ at
0, to 0 at∞.
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Example: optimal economic growth

Consider the rate of per capita investment

.
k=

d
dt

(

K
L

)

=

.
K
L
−

(

K
.
L

L2

)

=

.
K
L
−n

K
L
=

.
K
L
−nk

using the fact that
.
L/L = n. Now we assumed that GDP could be

expended in one of three ways, leading to

Y =C+
.
K +µK

which we also divide byL to obtain

y= c+
.
k+(µ+n)k

which, when we substitutey= f (k) gives

c(t) = f (k)−
.
k− (µ+n)k(t)

Variational Methods & Optimal Control: lecture 22 – p.20/??



Example: optimal economic growth

We want to maximize the totalutility

Utility of per capita consumption isU(c). This would also be a
strictly concave, monotonically increasing function (according to
the law of diminishing marginal utility, i.e.U ′′(c)< 0<U ′(c)).

Utility in the future is discounted by rater, e.g. is given byU(c)e−rt

Our control is how much we consume (and hence what is left to

invest
.
k), and the state is the per capita investmentk(t).
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Example: optimal economic growth

We want to maximize the totalutility over time, e.g.

F{c}=
∫ T

0
U(c)e−rt dt

subject to

c(t) = f (k)−
.
k− (µ+n)k(t)

with k(0) = k0, andk(T) = kT .

Substitutec into the functional and we get

F{k}=
∫ T

0
U
(

f (k)−
.
k− (µ+n)k(t)

)

e−rt dt
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Example: optimal economic growth

The E-L equations are
d
dt

∂ψ

∂
.
k
−

∂ψ
∂k

= 0

whereψ(k,
.
k) =U

(

f (k)−
.
k− (µ+n)k(t)

)

e−rt , so

−
d
dt

e−rt dU
dc

−e−rt dU
dc

[

d f
dk

− (µ+n)

]

= 0

−e−rt d
dt

dU
dc

+e−rt dU
dc

[

r −
d f
dk

+(µ+n)

]

= 0

−e−rt d2U
dc2

dc
dt

+e−rt dU
dc

[

r −
d f
dk

+(µ+n)

]

= 0
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Example: optimal economic growth

We knowe−rt 6= 0, so we divide it out, and rearrange to get

dc
dt

=

[

r +µ+n−
d f
dk

]

U ′

U ′′

which together with

.
k= f (k)−c(t)− (µ+n)k(t)

determines the optimal solution of the system. Remember we are given

U the utility

f the per capita production as a function of capital

Variational Methods & Optimal Control: lecture 22 – p.24/??



Example: optimal economic growth

Example,U(c) = log(c), thenU ′ = 1/c andU ′′ =−1/c2, so

dc
dt

= αc whereα =−

[

r +µ+n−
d f
dk

]

so
c(t) = Aeαt

To solve fork, take linear production model, e.g.y= βk, and then
.
k= γk(t)−c(t) whereγ = (β−µ−n)

So
k(t) = Beγt +

c(t)
γ−α

= Beγt +
c(t)

r

with A andB determined byk(0) = k0, andk(T) = kT .
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Example: optimal economic growth

To maintain constant consumptionc(t) we require
.
c= 0, and so we must

have
d f
dk

= r +µ+n

To maintain constant investment, we require

.
k= f (k)−c(t)− (µ+n)k(t) = 0

which together determine a solution(c∗,k∗), where the system is in
equilibrium.

For the exampley= βk

k=
r +µ+n

β
and c= (β−µ−n)k

Variational Methods & Optimal Control: lecture 22 – p.26/??


	
	Formulation of control problems
	Optimal control problems
	Optimal control problems
	Terminal costs
	System Terminology
	Control Terminology
	Cost functional examples
	Boundary conditions
	Example: dynamic production
	Example: dynamic production
	Example: dynamic production
	Example: dynamic production
	Example: dynamic production
	Example: dynamic production
	Example: dynamic production
	Example: optimal economic growth
	Example: optimal economic growth
	Example: optimal economic growth
	Example: optimal economic growth
	Example: optimal economic growth
	Example: optimal economic growth
	Example: optimal economic growth
	Example: optimal economic growth
	Example: optimal economic growth

