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More Optimal Control
Examples

First we’ll cover a bit more terminology, and then some ex@®p
primarily focussed on planned growth strategies in econemi
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Formulation of control problems

We break a control problem into two parts
B Thesystem state: x(t) = (X1(t),...,Xn(t))!
The system state describes the system (e.g. position ancityebf
the car in car parking example)

B Thecontrol: u(t) = (uy(t),...,um(t))"
We apply the control to the system (e.g. force applied to #rg c
The evolution of the system is governed by the set of DEs

X(t) = g(t,x,u)

In a control problem we want to get the system to a particu&es(t;) at
timety, given initial statex(tp).
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Optimal control problems

In anoptimal control problem we have still have the system equations
X(t) = g(t,x,u) and we might wish to get to staxét;) given initial state
X(tp), but now we wish to do so while minimizing a functional

ty
F{x,u} = [ f(t,x,u)dt
to

That is, we wish to choose a functioit) which minimizes the functional
F{x,u}, while satisfying the end-point conditiomsty) = xo and
X(t1) = X1, and the non-holonomic constraint&) = g(t, x, u).
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Optimal control problems

Optimization functional

ty
F{x,u} = [ f(t,x,u)dt

to

Note that

B f(t,x,u) has no dependence anthis is typically because costs
depend on the control, not how we change the control, buéther
might be counter-examples

B f(t,x,u) has no dependence a&nthis is common in control
problems, but not universal (we have seen at least one gounte
example).
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Terminal costs

Sometimes in optimal control we don't fix the end-poi(t; ), but rather
we assign a cosf(t;, X(ty)) to particular end-points.

So now we wish to choose a contrglt) which minimizes the functional

F{x,u} = @(ty,Xx(ty)) + " f(t,x,u)dt

to

while satisfying the single end-point conditia(ty) = Xp, and the
non-holonomic constrain(t) = g(t, x, u).

B @(t1,X(ty)) is called theerminal cost.
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System Terminology

M |inear: the state equations are a set of linear DEs.

B autonomous. time doesn’t appear explicitly in the state equations
(e.g. ing(x,u), or f(x,u)).
W also called time-invariant

B terminal cost: the termq(ty, x(t1)) is called the terminal cost.
B controllable: a solution to the control problem exists.

B stable: a stable equilibrium solution to the system DEs exists.

B often we are interested in problems that are unstable, or we
wouldn’t really need a control
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Control Terminology

B control (driver or automatic)

H planned (open loop)

B feedback (closed loop) control depends on current state
B type of control

B movement fromAto B

B continuous operations (maintain equilibrium)
B type of cost functionakF

B minimum time

B minimum fuel

B quadratic costs

B admissible controls
B unbounded/bounded/bang-bang
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Cost functional examples

B minimum time: choose the fastest possible control

t
F{x,u} = [ dt

to

B minimum fuel: fuel is expended by the controller, and we wish to
minimize this

B guadratic costs:
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Boundary conditions

B End timet;: can be fixed or free
B End positiornx(t;): can be fixed or free

In the cases with free boundary conditions, we introducaragtor
transversal boundary conditions.
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Example: dynamic production

B A producer in purely competitive market
B A large numbers of independent producers
B Standardized product, e.g. potatoes

B Firms are "price takers”, i.e. they have no significant cointr
over product price

B Free entry and exit
m Free flow of information

m wants to find optimal production pa#t), 0<t <T.
B production targex(T) = Xt
W profit at timet is 11(x, X, t)

B maximize profit functionaF {x} = [, Ti(x,X,t) dt
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Example: dynamic production

Profit calculation

B quadratic production cos@ = a;x°+ bix+¢;
W |abor
B raw materials

: : a2 .
B production increase codts = axX + box+Co
B new buildings
M recruiting and training costs

B revenua = pxwherep is the constant price per unit
B p = constdue to purely competitive market

W profit at timet is

(X, X,t) = px— C1(X) — Cy(X)
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Example: dynamic production

Problem formulation: maximize total profit

F{x} = /OT px—C1(X) — Cy(X) dit

subject tax(0) = 0 andx(T) = xt.
B notice that the control, and rate of change of state are the $ce.,
u = X) but we write it as above for simplicity
B autonomous problem
B the control is planned, and has quadratic costs
M admissible controls are unbounded
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Example: dynamic production

Euler-Lagrange equations

d an_ om 0

dtgx ox
do G,

dt gx ox

d .
—5 28X+ by| — p+2ayx+by = 0
—2a, X —p+2ax+b; = 0
Y VA —p+by
A 22

fora, #0
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Example: dynamic production

Solution (forag, ay # 0)

aq _ Ja b, —
x(t):Ae\/gtJrBe o' i
2o

whereA andB are determined by the fixed end poir{f) = x; and
X(T) = XT.

This gives the optimal production schedule.
B no dependence an or ¢, (these are constant costs and so shouldn’t
effect production strategy)

B no dependence dmp because this is a linear cost in increasing
production, and so occurs regardless of how we increasdiover
(to get to the final production targeftT) = Xr).
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Example: dynamic production

What happens if we make the end poi(it) free, i.e. we don’t have a
production target at timé ?

Then we get a natural boundary condition

6—1:[ = O_sz = 2&2).(—|— bz‘t—T =0
OX|_r  OX |7 -
So, rearranging, we get
. b,

B constant$\ andB are determined by end-point conditiox(®) = X
andx(T) = —>%
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Example: dynamic production

B production cost€; = X2+ 5x X(T)=1
- free end point

B production increase costs
C, = 25 + 5%

mp=10

BET=1

BX;—0,xr=1
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Example: optimal economic growth

How much should be consumed, and how much invested for future
consumption?

B optimal theory of saving (Ramsey, 1928)

W Total capital at time is K(t)

m Total population (labor forcd)(t), which grows at exogenous rate
n, e.g.[ =nL

B Homogeneous quantity called GDP denoYgt)

B GDP can either be consuméxlt) or invested to gd'K(t), or used to
replace depreciated capifaK(t).

Y (t) = C(t) + K(t) + pK(t)
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Example: optimal economic growth

m GDPY(t) is a function of laboL (t), and capitaK(t)

B The production functioiY (t) = f,(K,L) is homogeneous of degree

one, e.g. Y(t) = L(t) fo(K/L, 1) = L(t)f(K/L)

B Hence we normalize all quantities by population
y = Y/L GDP per capita
k = K/L Capital investment per capita
c = C/L Consumption per capita

and writey(t) = f (k) wheref is assumed to be a strictly concave,
monotonically increasing function, with slope decreagnogn c at
0, to O ateo.
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Example: optimal economic growth

Consider the rate of per capita investment

|.(—E E —E_ K_I._ —E_nE—E_nk
S dt\L/) L L2 ] L L L

using the fact thalf;/L = n. Now we assumed that GDP could be
expended in one of three ways, leading to

Y =C+K+pK
which we also divide by to obtain
y=c+k+ (H+n)k

which, when we substitute= f (k) gives

c(t) = f(K) —Kk— (u+n)k(t)
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Example: optimal economic growth

B \We want to maximize the totaltility

m Utility of per capita consumption id (c). This would also be a
strictly concave, monotonically increasing function (@abkng to
the law of diminishing marginal utility, i.dJ”(c) < 0 < U’(c)).

m Utility in the future is discounted by rate e.g. is given byJ (c)e "
B Our control is how much we consume (and hence what is left to
investl'<), and the state is the per capita investni€ny.
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Example: optimal economic growth

We want to maximize the totaltility over time, e.g.

F{c) = /OTU(c)e”dt

subject to
c(t) = f(K) —Kk— (u+n)k(t)
with k(0) = ko, andk(T) = kr.

Substitutec into the functional and we get

F{K} — / ~ (u+n)k(t)) e "ok

Variational Methods & Optimal Control: lecture 22 — p.22/



Example: optimal economic growth

The E-L equations are

doy oy

dt a|'< ak_o

where(k, I'<) U (f(k) —k— (H+ n)k(t)) e ", so

d .du _.du[df 1
“@t® dc © dolak M) =0
ddu . dU[ df ‘
it 7T —rt == 0 —
® “dtdc ¢ dc| gk WM =0
PUdc . dU[ df ‘
P | S —rt == 0 _
¢ d@dt ¢ do| gk WM =0
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Example: optimal economic growth

We knowe ™" £ 0, so we divide it out, and rearrange to get

de_ r+y+n—
dt H

df | U’
dk| U”

which together with

k= f(k)—c(t) — (u+n)k(t)

determines the optimal solution of the system. Remembenrg/gigen
m U the utility
m f the per capita production as a function of capital
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Example: optimal economic growth

ExampleU (c) = log(c), thenU’ = 1/candU” = —1/¢?, so

%—acwherea—— r 4 +n—ﬁ
at - H dk

>0 c(t) = Aet

To solve fork, take linear production model, e.g= Bk, and then

k = YK(t) — c(t) wherey = (B—p—n)

So - N c(t) -
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Example: optimal economic growth

To maintain constant consumptio(t) we requireC = 0, and so we must
have
df

m(:r+u_|—n

To maintain constant investment, we require

k= f(K) —c(t) — (u+n)k(t) =0

which together determine a solutioci', k"), where the system is in

equilibrium.

For the examplg = Bk

r+u+n
B

K= and c=(B—p—n)k
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