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Example: launching a rocket

Launch a rocket (with one stage) to deliver its payload irde/tEarth
Orbit (LEO) at some height above the Earth’s surface.
Assumptions:

» ignore drag, and curvature and rotation of Earth

» LEO so assume gravitational force at ground and orbit are
approximately the same

» thrust will generate accelerati@ywhich is predefined by rocket
parameters

» we thrust for some tim&, then follow a ballistic trajectory until
(hopefully) we reach height, at zero vertical velocity, and with
horizontal velocity matching the required orbital injectispeed.
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More Optimal Control
Examples

An aerospace example: a rocket launch profile.
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Example: launching a rocket

(u(t), v(t))
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Example: launching a rocket

thrust component

X

>
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Example: launching a rocket

» Control: thrust profile is pre-determined. The only thing ves
control (in this problem) is thangle of thrust.

> Thrusta(t) is constant for our example.
> Measure the angle of thruBtt) relative to horizontal.

» want to minimize fuel
> but this is equivalent to minimizing time, e.g.,

t T
F:/adt:a/ 1dt
0 0

» need to get to heighit
» need to get to horizontal velocity, to enter orbit
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Example: launching a rocket

Notation: . .
horizontal position

vertical position
= horizontal velocity
vertical velocity

< © < X
I

Initial conditionsx(0) = y(0) = u(0) = v(0) = 0. Thrust stops at timé,
and then at some later tin® we reach the peak of the trajectory where

Constraint equations

Thrust component < T

Ballistic componentT <t < S

yS = h
u(S = uo, orbital velocity
v = 0

We don't actually care about the final positie(b)
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X(0) =y(0) =u(0) =v(0) =0.

~inal point: free

X = u X = u

y = v y

U = acosh u 0

vV = asind—g vV = —g
nitial point: Initial point: fixed

X(T), y(T), u(T), v(T)

Final point:

X(S) free,

y(S) =h,v(S)=0,u(S) = U
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1st consider ballistic component

Fort € [T, S we have no control, and

X = u
y

l.J pu—
vV = —g

we can calculate the top of the resulting parabola as

us = u(m)
v = 0
y(S) = y(T)+v(T)%/2g

andx(T) andx(S) are free.
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Example: optimization functional

Time minimization problem

]
T:/ 1dt
0

Including Lagrange multipliers for the 3 system consti®imé aim to
minimize

.
J{G}:/ 1+ Ay (G—acosB) + A, (V—asinB+g) +A, <2— %sinﬁ) dt
0

subject to u(0) 0, u(T) to
v(0) = 0, v(T) = free
z(0) = 0, ZT) = h
6(0) = free, O(T) free
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Example: co-ordinate transform

So we can change variables: make the final poiafl, and take variables
u, v as before, and

z=y+V?/2g.

We can differentiate this and combine with previous redoliget the new
system DEs

U = acosh
vV = asind—g
z = y+w/g
= v(1+V/g)
= i/sine
g
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Example: Euler-Lagrange equations

E-L equations

oh doh
u ﬁ_&au 0 = A, =0
oh doh . .
V! o dton =0 = A, = —)\ngme
oh doh .
00 dtae

aA,sind — A,acosb — )\Z%/ cosf=0

(A equations give back systems DES)
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Example: solving the E-L equations

Take thev equation, and noting that= asin® — g

. a .
A, = —)\zésme
Az .
g( 9)
Az
g
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Example: solution

Remember thak, andA, andb are all constants, so the equation

tan® = — (At —b) /A,

» angle of thrust now specified
B=tan!(— (At —b)/A)

» but we need to determine constants
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Example: solving the E-L equations

Substitute

)\V:—%/—Azt_'_b

into theB E-L equation (dropping the common factr
AySinG — A, cosb — )\Zg cosf=0
and we get

Ausin6+<%’+)\Zt—b>cose—)\z\écosﬁ -0

AuSinB+ (At —b)cos® = O
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Example: end-point conditions

Final end-points conditions

T = free
z2T) = h
u(T) = u,, orbital velocity
v(T) = free
6(T) = free
A = free
AN = free
A, = free
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Example: natural boundary conditions

The free-end point boundary condition for
Fit.a.d) = [Lta.dd

n n
Z pxdak — H&t = 0 wherepy = i andH = z Gpc—L
K=1 a0, K=1
In this problem

a—-L:07 a_I::07 a_I::)\Lla a_ITZ)\V7 a_ln_:)\
oA, 90 ou ov 0z
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Example: natural boundary conditions

GivenA,(T) = 0, and from previous work

A
sz—é"—xﬁb

we get
ANV(T)/g = —AT+b
v1) = M9 ane(m)
Az
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Example: natural boundary conditions

Considerg for each co-ordinate:
» for fixed co-ordinatesi andz, we havedgx = 0

» its free forB, Ay, Ay, Az, but in each case the correspondfmg= 0,
S0 we can ignore these.

» only case where it matters &, which we can vary, and for which
pv - )\\p

Also ot is free, so we get two end-point conditiong at T.
H(T) = 0
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Example: natural boundary conditions

a—-L:()g a_|::07 a_ljz)\lh a_ljz)\V7 a_ll_:)\z
oA, 90 ou ov 0z
SoH is given by
H=A0+AV+Az—L

Substitutd., and the system DEs, and we get

H = )\ui]—i_)\v\./—i_)\zi_ l

The end-point condition d@t= T is therefore

}\ul.,H- Av\./+)\22 == 1
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Example: natural boundary conditions

Substitute
AV — _)\2V/g - Azt + b
= —Av/g+Astand
U = acosh
vV = asinb—g
7 = i/sine
g
Into
}\ul:l‘i‘)\v\./‘i_)\ziz 1
and we get
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Example: natural boundary conditions

Another way to get the same result is to note
H — Aulj‘kAv\?‘l‘Azi* L

and
: o .oav
L=1+Ay(0—acos8) + A (V—asin+g) +A, <z— rl smG)

SO

avi,

H = AyacosB+A,[asin® —g] + g sin6—1

which is what we got near the start of the previous slide leefor
substituting\, = —A,v/g+ A, tan®.
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Example: natural boundary conditions

We get

}\ul:l+)\v\7+Azi = 1
)\uacose+(—)\zv/g+)\utan9)(asin9—g)+)\z%vsin9 =1

Auacosb+Av+Ajatanfsin@ —ghtand = 1
Aja(cosd+tanBsin®) +A,v—gA tand = 1
Aa <co§e+ Si’e

cosd
Ajased+Av—gagtand = 1

)Jr)\zv—g)\utane =1

all evaluated at = T. Combine withgh,tand = A,v and

A;=co906(T))/a
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Example: natural boundary conditions

At the starting point, all of the co-ordinates are fixed (gtder 6, and the
Lagrange multipliers), so the only free-end points conditt this point is

H=0

as before. In fact, i = cond the problem is not time-dependent,i$as
conserved, i.e.

H(t)=0

for the entire rocket flight. Note though, that for this sysiél is not
“energy” as this is not conserved (unless you include thenited energy
stored in the rocket).
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Example: acceleration profile

The next steps depend on the acceleration praftlg but lets take a
simple case = const.

First we can solve the DEs, with respecBtasing the chain rule

X _ 00 g dX
dt  do dt y doe

e.g. from the system DE= acosd

. A, du
a = §9A—u%
du A .
4 ~ ncogo-
aky
~  )\,cos
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Example: acceleration profile

The system DEs can be directly integrated (with respe@j tocluding
initial conditionsu(0) = v(0) = z(0) = 0 to get

u(e) = a)\ulo (secﬁ0+taneo>

A, se®+ tand
v(e) = a;\_ (sedy — sed) — g}f\ Y (tanBp — tand)
z
2 2 3.2)\5 nZ nZ
z(0) = 2 > (sedp —sed) — 2902 (tarr By —tarr 0)
2 sedy + tanby
2}\2 [taneo sedy —tanBsed + log <m>]

8 = tan'(—(At—Db)/A)
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Example: acceleration profile

de  dt/dt  dt A

dX —dX do _dX (—C0526A2>
A
The complete set of system DEs becomes

du ahy

de = A,cos

dv. a\, sinB oAy
@ — ", co26 ' ncod6
dz aA, sin@

d® = gA,co20 v(®)

These can just be integrated with resped to
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Example: calculating the constants

There are five constants to calculate:
» 0 the initial angle of thrust
» 0 the final angle of thrust
> Ay
> A,
> b
and we also need to calculake

Solving for end-point conditions is non-trivial, but a meththat works
well (from Lawden) follows.
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Example: calculating the constants

Take the equation forat timeT, and substituta,v(T) = gA,tan6; to get

v(61) = By (sedp — sed;) — P (tanBp — tand; )

% tanf; = % (sedy—sed) — % (tanBp — tanB)
Az Az Az
sed; = sedgy— g tanBg

which gives us a way to calculafe from 65. Once we know; we can
calculate\, usingA,a = cosB;, andb from tan@ = (— (At —b) /A,) at
t = 0. Then we can calculate from u(8;) = u,, the orbital injection
velocity
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Example: restricting choice &k

Calculating the range @, to search
» The maximum (reasonable) value fyis 11/2.

» The minimum value 06y will be determined by the minimum
possible value 08,, i.e.,6; =0

sed; = sedy— g tanBg
sec0 = sedy— g tanBg
1 = sedy— g tanBy

14tarf6y/2 g 2tanBy/2
1-tarf6p/2 al-—tarf6y/2

1-tarf8y/2 = 1+tarf@y/2— %taneo/z
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Example: calculating the constants

So the only remaining question is how to calculdgeWe do so
numerically, by

» take arange o

» calculate all of the above

» use this to calculate(T) = z; as a function 0By

» look for the point where; (8p) = h the orbit height.

That gives us th&y, from which we can derive everything else. There are
good numerical methods to search for such a solution, pdatiy if we
start with a clear range over which to look.
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Example: restricting choice &k

1—tarf@p/2 = 1+tar?60/2—2§tan60/2
2tan?90/2—2£tan60/2 =0

tanBy/2 (taneo/Z— g) =0

Now 8, can't be zero, so the last step implies that the minimum vafue
eo is
8o = 2tan }(g/a)

Note the existence of a minimum critidabelow which we can't find a
trajectory of this type.
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Example: parameters

Parameters of previous example consistent with a LEO.

h = 500km
U, = 8000 m/s
g = 9.8m/g
a = 3g
Derived constants
B = 0.23491 6, = 0.09731
Ay = 0.0324 Az 6.0257%— 05
b = -0.0295
T = 3198 seconds
S 4896 seconds
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Example: generalizations

More realistic assumptions
» non-zero drag (depends on velocity and height)

» thrustis constant, but rocket mass changes, so that aatieteisn’t
constant

» multiple stages
» centripetal forces

For more examples, and discussion see Lawden, “Optimatdiajes for
Space Navigation”, Butterworths, 1963 (which is incidégtachere the
above example comes from).
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Example: trajectory

acceleration = 3.0 g, u, = 8000 m/s

600
=400
§, 319.8 s
+= 300
K=
2 200
—accelerated
100 - - -ballistic
0 . . ) —>thru_st directiop
0 500 1000 1500 2000 2500

X (km)
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