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More Optimal Control
Examples

An aerospace example: a rocket launch profile.
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Example: launching a rocket

Launch a rocket (with one stage) to deliver its payload intevtEarth
Orbit (LEO) at some heigHt above the Earth’s surface.

Assumptions:
B ignore drag, and curvature and rotation of Earth
B LEO so assume gravitational force at ground and orbit are
approximately the same
B thrust will generate accelerati@which is predefined by rocket
parameters

B we thrust for some timé, then follow a ballistic trajectory until
(hopefully) we reach heiglt, at zero vertical velocity, and with
horizontal velocity matching the required orbital injectispeed.
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Example: launching a rocket
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Example: launching a rocket
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Example: launching a rocket

Notation: . .
= horizontal position

= vertical position
= horizontal velocity
= vertical velocity

< C <K X

Initial conditionsx(0) = y(0) = u(0) = v(0) = 0. Thrust stops at tim¢&,
and then at some later tingg we reach the peak of the trajectory where

y(§ = h
u(lS) = U, orbital velocity
viS) = 0

We don’t actually care about the final positig{b)
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Example: launching a rocket

m Control: thrust profile is pre-determined. The only thing ves
control (in this problem) is thangle of thrust.

® Thrusta(t) is constant for our example.
m Measure the angle of thruBtt) relative to horizontal.

B want to minimize fuel
® but this is equivalent to minimizing time, e.q.,

t T
F:/adt:a/ 1dt
0 0

B need to get to heigltt
B need to get to horizontal velocity to enter orbit
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Constraint equations

ust component < T

X = U

y = v

U = acosd

Vv = asind—g
al point:

) =Yy(0) =u(0) = v(0) =0.

al point: free

Ballistic componentT <t < S

= u

= 0
= 0

<= Cr <= X=
I

Initial point: fixed
X(T), y(T), u(T), v(T)

Final point:
X(S) free,
y(S) =h, v(S) =0, u(S) = u,
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1st consider ballistic component

Fort € [T, S we have no control, and
X = U

y
u = 0
Vv = —(

we can calculate the top of the resulting parabola as

u§) = u(T)
v = 0
YS) = y(T)+v(T)?/2g

andx(T) andx(S) are free.
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Example: co-ordinate transform

So we can change variables: make the final poiafl, and take variables
u, v as before, and

Z=Yy+V*/2g.

We can differentiate this and combine with previous redoltget the new
system DES

U = acosd

Vv = asind—g

Z = y+w/g
= v(1+vVv/g)
_ %Vsine
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Example: optimization functional

Time minimization problem

)
T:/ 1dt
0

Including Lagrange multipliers for the 3 system constiimé aim to
minimize

.
1{6}:/ 1+ Ay (0—acosB) + A, (V—asinf+g) + A, (2— a—vsin6> dt
0

g
subject to u(0) 0, uT) =
v(0) = 0, v(T) = free
z(0) = O, Z(T) = h
0(0) = free, O(T) = free
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Example: Euler-Lagrange equations

E-L equations

4 oh doh
- du  dtag
”- oh doh
- ov dtav
. oh doh
0z dtaz
9- oh doh
- 00 dtjg

0 = A, = 0

0 = ).\V = —Azgsin
0= A\, =0

0 =

ah,SIinB — Ay,acosb — )\Za_v cosf=0

g

(A equations give back systems DES)
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Example: solving the E-L equations

Take thev equation, and noting that= asin — g

\Y

).\ — —)\ngine
g

AZ ™
= ——(V+
g( g)

A
)\v — —EZ(V—th—FC)

R
g
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Example: solving the E-L equations

Substitute

sz—%"—xﬁb

Into theB® E-L equation (dropping the common factr

AySINBG — A, CcOSO — )\Z\é cosB =0
and we get

)\usin9+(%/Jr)\zt—b)cose—)\z\écose =

AuSINB+ (At —Db)cosB = O

Variational Methods & Optimal Control: lecture 23 — p.23/



Example: solution

Remember that, andA, andb are all constants, so the equation

tan = — (At —Db) /A,

B angle of thrust now specified
B=tan ' (— (At —Db)/A,)

B but we need to determine constants
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Example: end-point conditions

Final end-points conditions

free

h

Uo, Orbital velocity
free

free

free

free

free
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Example: natural boundary conditions

The free-end point boundary condition for

F{t,q,q} = /L(t,q,d)dt

IS 0

n
Z PkOgx — HOt = 0 wherepk = O_L andH = Z 0. Pk — L
k=1 e =1
In this problem
a—-Lzov a_|::0> a—lfz?\u, a—lfz?\v, a_l._:7\z
oA, 00 ou ov 0z
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Example: natural boundary conditions

Considemg for each co-ordinate:
m for fixed co-ordinatesi andz, we havedg, = 0

m its free forB, Ay, Ay, A2, but in each case the correspondmg= 0,
SO we can ignore these.

B only case where it matters &, which we can vary, and for which
pv — Av.
Also ot is free, so we get two end-point conditiond at T.

H(T) = O
pv:)\v(T> = 0
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Example: natural boundary conditions

GivenA(T) = 0, and from previous work

)\V:—%/—)\ZhLb

we get
AMT)/g = —AT+b
= Aytand(T)
vT) = AALgtanem
Z
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Example: natural boundary conditions

L L
a—.Lzoa a_|::07 a—ljz)\w a_-:)\w a_-:)\Z
oA, 906 ou ov 0z

SoH is given by
H — )\ul.,l—l_}\v\./—l_)\zi_ L

Substitutd_, and the system DEs, and we get
H — )\u0+)\v\./—|_ )\22_ 1
The end-point condition @t= T is therefore

)\ul:l _|_ Av\./—|_ )\22 — 1
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Example: natural boundary conditions

Substitute
)\V — _)\2V/g — )\2t —|_ b
= —AV/g+Aytand
U = acosd
Vv = asind—g
> = Ysing
g
Into
)\ul.]"_)\v\./‘l_ )\22 — 1
and we get
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Example: natural boundary conditions

We get
}\ul.,l‘l_)\v\./—l_ }\22 == 1
AyacosB+ (—Av/g+ Aytand)(asinG — g) +)\Z%Vsin6 = 1

Ayacosb+ A,v+AjatanBsin@ —ghytand = 1
Aya(cosB+tanBsinBG) +A,v—gAytand = 1
(coszeJrsinze

Aua

cosd
Ajased+Av—gAjgtan6 = 1

>+)\Zv—g)\utan6 = 1

all evaluated at = T. Combine withgh,tan@ = A,v and

A;=c096(T))/a
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Example: natural boundary conditions

Another way to get the same result is to note

H — )\ul]"_)\v\./"_)\zi_ L

and
L=1+A, (0—acosB) +A, (V—asin®+g) +A; (2— %’sin@)

SO
avi,

9

which is what we got near the start of the previous slide lgefor
substitutinghy, = —A,v/g+ Aytané.

sing—1

H = A,acosB+A[asind —g| +
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Example: natural boundary conditions

At the starting point, all of the co-ordinates are fixed (gtder 6, and the
Lagrange multipliers), so the only free-end points cooditt this point is

H=0

as before. In fact, i = cong the problem is not time-dependent,idas
conserved, i.e.

H(t) =0

for the entire rocket flight. Note though, that for this sysiél is not
“energy” as this is not conserved (unless you include thenoted energy
stored in the rocket).
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Example: acceleration profile

The next steps depend on the acceleration praftlg but lets take a
simple cas& = cong.

First we can solve the DEs, with respecBtasing the chain rule

dX dXdé Az dX
E—%E——COSZG)\—U%

e.g. from the system DE= acosd

. A, du
u = —0052(9)\—u 15

o A
doe A,C0%0
aA

~ \,cosP
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Example: acceleration profile

dX dX do dX
g6 dt’dt  dt ( COSZGA)

The complete set of system DEs becomes

du e,

d  A,cos

d_v B a)\ sme oAy
de A, co§6 \,cos6
dz aA\, SinB

dd g\, co20 v(®)

These can just be integrated with resped to
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Example: acceleration profile

The system DEs can be directly integrated (with respe@} tocluding
initial conditionsu(0) = v(0) = z(0) = 0 to get

~ahy sedp + tanBy
u(®) = A Iog( sed -+ tand )
v(B) = Ay (sedy —sed) — Ay (tanBy — tano)
)\Z )\Z
aZ)\Z 2)\2
2(8) = 2 U sed; (sedy — sed) — T U (tarf B — tarr 0)

[taneo sedy —tanBsed + log <Se@0 + taneo> ]

sed + tanb
8 = tan'(—(At—Db)/AY)
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Example: calculating the constants

There are five constants to calculate:
m O, the initial angle of thrust
B 0, the final angle of thrust
H A\,
H A,
HDb
and we also need to calculake

Solving for end-point conditions is non-trivial, but a meththat works
well (from Lawden) follows.
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Example: calculating the constants

Take the equation forat timeT, and substituta, v(T) = gA,tanB; to get

Ay
v(0) = a}\)\_ (sedy —sed;) — g}\_ (tanBy — tanB)
Z
P = tand; = Ay (sedp — sed;) — G (tanBy — tand, )
A A A\,
sedd; = sedy— g tanBg

which gives us a way to calculabg from 8,. Once we knovB; we can
calculater, usingAya = cosB;, andb from tan@ = (— (At —b) /A,) at

t = 0. Then we can calculate from u(81) = u,, the orbital injection
velocity
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Example: calculating the constants

So the only remaining question is how to calculdde\We do so
numerically, by

B take a range odg

B calculate all of the above

W use this to calculat&gT) = z; as a function 0B

m |ook for the point where;(6y) = h the orbit height.

That gives us th@g, from which we can derive everything else. There are
good numerical methods to search for such a solution, patily if we
start with a clear range over which to look.
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Example: restricting choice &k,

Calculating the range di; to search
B The maximum (reasonable) value fyis 11/2.

B The minimum value 06,y will be determined by the minimum
possible value 064, 1.e.,0: =0

9

sedd; = sedy— - tanBg
secO0 = sedy— g tanBg
1 = sedy— g tanBg

1+tarf@y/2 g 2tanBy/2

1 = 1—tar?60/2_51—tar960/2
1—tar1260/2 = 1+tanzeo/2—2§tan60/2
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Example: restricting choice &k,

1—tarfy/2 = 1+tanzeo/2—2§taneo/2
29
2tar?60/2—€tan60/2 = 0
9\ _
tanBy/2 (taneo /2 — - ) = 0

Now Oy can’t be zero, so the last step implies that the minimum vafue
60 1S

By = 2tarr (g/a)
Note the existence of a minimum critidabelow which we can’t find a
trajectory of this type.
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Example: parameters

Parameters of previous example consistent with a LEO.

h = 500km
U, = 8000 m/s
g = 9.8m/s
a = 3¢9
Derived constants
B = 0.2349t 0, = 0.0973t
Ay, = 0.0324 A, = 6.0257%—-05
b = -0.0295
T = 3198 seconds
S = 4896 seconds
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Example: trajectory

acceleration = 3.0 g, u, = 8000 m/s

600

500f

height (km)
N W D
o ) o
S O 9

o
)

—accelerated
- ==pallistic
—>thrust direction

OO

500

1000 1500 2000 2500
x (km)
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Example: generalizations

More realistic assumptions
B non-zero drag (depends on velocity and height)

B thrust is constant, but rocket mass changes, so that aateftersn’t
constant

B multiple stages
B centripetal forces

For more examples, and discussion see Lawden, “Optimatdtajes for
Space Navigation”, Butterworths, 1963 (which is inciddgtavhere the

above example comes from).
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