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Legendre transformation

» Contact transformation
(as opposed to point transformation)

» transformation that depends on the derivatives of a vagiabl

» simple one variable Legendre transformyofixp, x;] — IR, by
defining new variable, by

» providedy’(x) # 0 we can defina in terms ofp, by introducing the
Hamiltonian

H(p) = px—y(x)
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Hamilton’s formulation

We've seen the Hamiltoniad earlier on, but haven’t explored its full
power. Firstly, usingd can often result in a simpler approach than solving
the E-L equations, e.g., whefehas no dependence anor where there is
more than one dependent variable. More importantly thotii,
formulation can lead to an understanding of how symmetrig¢ke

problem of interest lead to conservation laws. Finally, wiewse the
Hamiltonian in the Pontryagin Maximum Principle, which wélstudy
soon.
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Legendre transformation

Assume for convenience thgats convex, e.gy” > 0 for x € [x,X1]. Then
dH d dy

a ~ @™ dp
o dx dy
~ Pap T dp
ok dyd
~ "dp dxdp

dy\ dx
(‘d—x)d—p+
= X

and also notgx — H =y, so from the paifp,H) we can recover the
original pair(x,y), by a Legendre transform.
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Example Legendre transformation

Let f(x) = x*/4, then

df ,
= i = X
H(p) = px—3¢ = 7p*°

Note that we can reverse with another Legendre transform

d_H
dp
px—H = x*-3x¢ = f(x)

pl/3 - x
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Hamilton’s formulation

The extremals of the functional

F{q}=/t:1<t,q,d>d

satisfy the Euler-Lagrange equations
doL oL _
dt aqk 00k

for all k.
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Hamilton’s formulation

Refer back to problems with more than one dependent variabighere
f has no dependence &n

Definegeneralized coordinatesq : [to,t;] — IR".

» i.e. take a set ofi functionsg(t), with two continuous derivatives
with respect td, and put them into a vectay(t)

» dot notation:

N RTIN (O A don
%= T e and q= dt*dt 7 dt

» Lagrangiari(t,q,q)
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Hamilton’s formulation

Legendre transform introduces tbenjugate variables

o

Pi

Suppose these equations can be solved to \jrias a function of
(t,qi, pi), then theHamiltonian is

n
H(t7q17"'7qn7p17"'7pn) :lelq _L(tﬂqu(i)
i=

We've seerp; andH before, for instance in transversality conditions.
» thep; are calledheneralized momenta
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Hamilton’s formulation

n
H(tvqlv'--aqna pl;---,pn) :lelq _L(tvqa(j)
i=

S0 H
op
H oL
g oq

Given the E-L equations, the second equation gives

oH__dob_ _dm
o dtog  dt

Variational Methods & Optimal Control: lecture 24 — p.9/26

Harmonic oscillator example

Simple pendulum

i /1 .2
Flo = [ (5m% - mol(1-com) ) o

E-L equations H
doL L
———— =0

gmlz' —mglsing = 0

ot ¢—mgising =

m'q; — I@ sinp = 0

standard pendulum equations, solve for srpall
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Canonical Euler-Lagrange equations

oH o dg;
op dt
oH - dp.
o  dt

» calledHamilton’s equationsor
CanonicaEuler-Lagrange equations

» Then E-L DEs converted intorzfirst-order DEs
» derivatives are now uncoupled
> therefore maybe easier to solve
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Harmonic oscillator example

Generalized momentum (in this case angular momentum)

p=Lomp = =P
0]
Hamiltonian is
. p2
H(@.p) = pe—L =5 5 +magl(1-cosy)
Hamilton’s equations are
oH  do - p
ap ot RO ST
o _ _dp = p = mglsin
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Harmonic oscillator example

Hamilton’s equations (2 first order DES)

v P
¢ = me
p = mglsing

Differentiate the first equation and we get
i b
=z

Substitute the value gi from the second of Hamilton’s equations and we

get g

Q0= I—sin(p

the Euler-Lagrange equation.
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Hamilton’s formulation

» F andF are equivalent under the Legendre transformation

> makeq andp independent, whereas before it was a bit of a trick
to pretendy andq were independent
» If L does not depend dnthen it should be clear from the Legendre
transformation thatl won't depend on.
> the system will beconservative
> i.e. H is a conserved (constant) quantity
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Canonical Euler-Lagrange equations

We can get the same Canonical E-L equations from finding meisof
the functional of & variables

~ b n 13
F{ql,.-.,qn,pl,--~7pn}:/ [2 piqi—H] ax
a |i{<

E.G.

o) B0 ] =

(o) e ] = o
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Hamilton-Jacobi equation

Find stationary points of
X1
Fiyh= [ 10eyy)dy

given particular fixed end pointo, Yo) and(Xy, y1).

Now vary the second end-point. We can consider that the clEdy}
along the extremal is now a function 0, y1), e.g.

F{y} = S(x1,y1)
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Hamilton-Jacobi equation

Make a small variation in the end-poifdix, dy). We know that the first
variation will consist of an E-L component, plus a (free gradnt) term
like

pdy — Hdx

but we are only considering extremal curves here, so the &rtponent
must be zero. Hence, we can write

0S= S(x+ &,y + dy) — S(x,y) = pdy — Hdx

Keepx fixed, and vary only, and we get

s _
6y_p

where the LHS i9S/0dy in the limit asdy — O
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Hamilton-Jacobi equation

Given a solutior§(x,y, a) to the Hamilton-Jacobi equations (wherés a
constant of integration), the extrema lie along the curves

9S _ const
oo

Proof: see

» Arthurs, Thm 8.1, p. 32
» van Brunt, Thm 8.4.1, p. 177
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Hamilton-Jacobi equation

Similarly keepingy fixed and varying we get an expression faS/dx,
which together with the previous expressions give
0S
ay
0S
ox

= p
= —H(Xy,p)

Substitute the former equation into the latter, and we get

0S 0S
— +H (x,y,&> =0

This is theHamilton-Jacobi equation
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Simple example

Find extrema of
b
Fi}= | y?x
The conjugate variable and Hamiltonian are given by

of

oy

—
of

H(X7y7 p) = yW_f
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Simple example

So the Hamilton-Jacobi equation is

0S 0S
&+H<x,y,®> =0

a_S_|_ 1‘ a_S ’ =0
ox 4 \oy N
To solve we také&(x,y) = u(x) + v(y) which gives

% + } d_V ? =0
dx  4\dy/
As udoesn’'t depend on, andv doesn’t depend og, the above equation

implies thatdu/dx is a constant, hence we can write

u(x) = —a’x+y
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Simple example

Taking the derivative 06§ WRT to 3 andy just gives an identity, and so
nothing new.

Taking the derivative 0§ WRT toa gives
2y — 20x = const

which is the equation of a straight line.
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Simple example

Then, the Hamilton-Jacobi equation becomes

Or
dv
@ 20
So
v(X) = 2ay+

So we now have
S(x,y) = —a®x+ 20y +y+p
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Simple example

The functional is
b
Fi}= | y?x

The E-L equation is

daof d .
dtoy —at? =Y =0

which obviously has straight lines as solutions. So the HtamiJacobi
equations gave us the same result (in the end).
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Pendulum example

0S

_— = = 2.
30 p=m“e
0S P
Frali —H(t,m,p)——m—ml(l—coscp)
So the Hamilton-Jacobi equation is
s 1 [8s\?
E‘FW <&p> —i—mgl(l—coscp) =0
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Hamilton-Jacobi equation

Where there are multiple dependent variables, we write the
Hamilton-Jacobi equation as

0S

0S 0S
E_{_H (taqla"'vqnaa_ma"'7a_%> =0

» Note this is a first ordepartial DE

» May be easier to solve in some cases, but often partial DEs are
harder

» Helps if we can separate the variables.
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