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Hamilton’s formulation

We've seen the Hamiltoniad earlier on, but haven’t explored its full
power. Firstly, usindgd can often result in a simpler approach than solving
the E-L equations, e.g., whefehas no dependence a&nor where there is
more than one dependent variable. More importantly thotigé,
formulation can lead to an understanding of how symmetnéke

problem of interest lead to conservation laws. Finally, wié wge the

Hamiltonian in the Pontryagin Maximum Principle, which welstudy
soon.
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Legendre transformation

B Contact transformation
(as opposed to point transformation)

B transformation that depends on the derivatives of a variabl

B simple one variable Legendre transformyof{xy, x;| — IR, by
defining new variablg, by

m providedy”’(x) # 0 we can defing in terms ofp, by introducing the
Hamiltonian

H(p) = px—y(X)

Variational Methods & Optimal Control: lecture 24 — 223/



Legendre transformation

Assume for convenience thgats convex, e.gy” > 0 for x € [Xg,X1]. Then

dH d dy
a @™ dp
_ p T W
dp dp
_ pPX L dydx
dp dxdp
dy\ dx
B (p_dx) dp
= X

and also notgx— H =y, so from the paif p,H) we can recover the
original pair(x,y), by a Legendre transform.
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Example Legendre transformation

Let f(x) = x*/4, then

df ,
P = dx = X
H(p) = px—3x* = 32p*3

Note that we can reverse with another Legendre transform

dH
dp
px—H = x*—3x* = f(x
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Hamilton’s formulation

Refer back to problems with more than one dependent variablghere
f has no dependence @n

Definegeneralized coordinatesq: [to,t1] — IR".

W i.e. take a set of functionsgy(t), with two continuous derivatives
with respect td, and put them into a vecta(t)

B dot notation:

T d:<dql oz dqn)

=G T g dt’dt’ U dt

W Lagrangiarl(t,q,q)
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Hamilton’s formulation

The extremals of the functional

H%zlﬂwm®d

to
satisfy the Euler-Lagrange equations

d oL oL

=0
dt aqk 00k

for all k.
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Hamilton’s formulation

Legendre transform introduces tbenjugate variables

oL

pi:a—qi

Suppose these equations can be solved to @ris a function of
(t,qi, pi), then theHamiltonian is

n
H(t7q17°°'7qn7 pl?"'?pn) — lelq _L(taqvq)
i—

We've seernp, andH before, for instance in transversality conditions.
B the p; are calledgeneralized momenta
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Hamilton’s formulation

H(t,q1,-..,0n, P1,---, Pn) = le.q. L(t,q,q)

=0 oH .
ap
oH oL
ag  dq

Given the E-L equations, the second equation gives

o0H doL  dp

og  dtog  dt
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Canonical Euler-Lagrange equations

aH_dqi
opi dt
aH_ dpi
o dt

B calledHamilton’s equationsor
CanonicaEuler-Lagrange equations

B Then E-L DEs converted intor2first-order DEs
B derivatives are now uncoupled
B therefore maybe easier to solve
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Harmonic oscillator example

Simple pendulum

F{o} = /: (%mlzc'l)z—mgl(l—coscp)> dt

E-L equations

doL oL
- — = 0
dta(p 000
Emlz'— Isinp = O
dt ¢—mg O =
Mg

m'(p'—l—sincp = 0

standard pendulum equations, solve for srpall
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Harmonic oscillator example

Generalized momentum (in this case angular momentum)

p=2r=m% = o=
0p
Hamiltonian is
. p2
H(9,p) = po—L = 57 +mgl (1 - cosp)
Hamilton’s equations are
oH  do > _ b
ap  dt ~ T me
a—H = _d_p = = | sin
00 at p = mgising
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Harmonic oscillator example

Hamilton’s equations (2 first order DES)

P
¢ = me
P = mglsing

Differentiate the first equation and we get
)
? = iz

Substitute the value qf from the second of Hamilton’s equations and we
get g .
(P — I— Sln(p

the Euler-Lagrange equation.
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Canonical Euler-Lagrange equations

We can get the same Canonical E-L equations from finding et of
the functional of & variables

~ b n ]

F{qla---7QH>pla--->pn}:/ |:Z|p|q|—H:| ox
a [—
E.G.

o dao\|lo . ]
. 0 —H — 0

<0qi dt 6(':|i> _iZ P |

o dao\N|lo . ]
— = G-H|l = 0

(api dtabi) _i;plql |
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Hamilton’s formulation

m F andF are equivalent under the Legendre transformation

B makeq andp independent, whereas before it was a bit of a trick
to pretendy andg were independent

m If L does not depend dnthen it should be clear from the Legendre
transformation thati won’t depend on.

B the system will beconservative
M i.e. H is a conserved (constant) guantity
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Hamilton-Jacobi equation
Find stationary points of
P = [ 1) oy

given particular fixed end pointo, o) and(xz,Y1).

Now vary the second end-point. We can consider that the \adl&dy}
along the extremal is now a function o4, y1), e.g.

F{y} =S, 1)
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Hamilton-Jacobi equation

Make a small variation in the end-poi(dx, dy). We know that the first
variation will consist of an E-L component, plus a (free guadnt) term

like
POy — HOX

but we are only considering extremal curves here, so the &riponent
must be zero. Hence, we can write

0S= S(X+ 0X,y+ dy) — S(X,y) = pdy — HdX

Keepx fixed, and vary only, and we get

35S

a/—p

where the LHS i9S/0y in the limit asdy — 0
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Hamilton-Jacobi equation

Similarly keepingy fixed and varying« we get an expression fofS/0x,
which together with the previous expressions give

0S
ay
0S
ox

= P
— _H(X7y7 p)

Substitute the former equation into the latter, and we get

0S 0S
a—X+H (x,y,a) =0

This is theHamilton-Jacobi equation
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Hamilton-Jacobi equation

Given a solutior§(x,y, a) to the Hamilton-Jacobi equations (wherés a
constant of integration), the extrema lie along the curves

oS _ const
oo

Proof: see

m Arthurs, Thm 8.1, p. 32
®m van Brunt, Thm 8.4.1, p. 177

Variational Methods & Optimal Control: lecture 24 — p.29/



Simple example

Find extrema of
b
F{y} = /a y?dx
The conjugate variable and Hamiltonian are given by

ﬂ
oy

[
<

H(X7y7 p) — y,__f
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Simple example

So the Hamilton-Jacobi equation is

0S 0S
a_x+H<X’y’@> = 0

a_S_l_ } a_S 2 — 0
ox 4\ dy B
To solve we také&(x,y) = u(X) + v(y) which gives

%‘l—} d_V 2—0
dx 4\dy/

As u doesn’t depend oy, andv doesn’t depend oR, the above equation
implies thatdu/dx is a constant, hence we can write

u(X) = —0°xX+y
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Simple example

Then, the Hamilton-Jacobi equation becomes

1 /dv\?
- 2 — - —
o +4(dy) 0

Or
dv
a/ = 20
So
v(X) = 2ay+

So we now have
S(X,y) = —a°X+ 20y +y+
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Simple example

Taking the derivative 08 WRT to 3 andy just gives an identity, and so
nothing new.

Taking the derivative 08 WRT toa gives
2y — 20X = condt

which is the equation of a straight line.
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Simple example

The functional is
b
F{y} = /a y'?dx

The E-L equation is

daf d ,
dtay ~ a2 Y =0

which obviously has straight lines as solutions. So the ktamiacobi
equations gave us the same result (in the end).
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Pendulum example

0S

2 p=mZ

0 p=m-Q

0S p?

i —H(t,cp,m———Zmlz—nngl(l—coscp)

So the Hamilton-Jacobi equation is

0S 1 (68

2
5% T omi2 a(p) +mgl(1—cosp) =0
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Hamilton-Jacobi equation

Where there are multiple dependent variables, we write the
Hamilton-Jacobi equation as

a_SJrH t ﬁ ﬁ —0
ot 7q17"'7qn70q17"'7aqn —

B Note this is a first ordgpartial DE

B May be easier to solve in some cases, but often partial DEs are
harder

B Helps if we can separate the variables.
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