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Hamilton’s principle

We now have a group of equivalent methods
» Euler-Lagrange equations

» Hamilton’s equations
» Hamilton-Jacobi equation

We saw earlier that these can give us other methods
» Hamilton’s principle=- Newton’s laws of motion

» WhenL is not explicitly dependent on then the Hamiltoniai is
constant in time.

> conservation of energy

> this is an illustration of a symmetry in the problem appegiin
the Hamiltonian
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Conservation Laws

One of the more exciting things we can derive relates to foretdal
physics laws: conservation of energy, momentum, and angula

momentum. We can now derive all of these from an underlyimgjple:
Noether’s theorem.
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Conservation laws

Given the functional
X1
Flyk= [ foeny...y")cx
if there is a functiorp(x,y, Y, ...,y™) such that

d
(K)y —
dxcp(x,y,y,..-,y )=0

for all extremals of-, then this is called &th order conservation law

» use obvious extension for functionals of several dependerebles.
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Conservation law example

Given the functional
X1
Flvh= [ oY)
wheref is not explicitly dependent on we know that the Hamiltonian

AR

=Yg

is constant, and so
dH
dx
is a first order conservation law for the system.

0
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Conservation laws

» physically interesting
> tell you about system of interest
» can simplify solution

> QX Y,Y,...,y¥) = cond is an ordek DE, rather than E-L
equations which are orden2

> ox,y,Y,...,y¥) = cond is often called thdirst integral of the
E-L equations

> RHS is a constant of integration (determined by boundary
conditions)

» how do we find conservation laws?
> Noether’'s theorem
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Several independent variables

For functionals of several independent variables, e.g.

Fig = || 2xy oy
the equivalent conservation law is
O-¢=0
For some functiomp(x,y,z Z,...,Z¥).

» Results here can be extended to these cases, but we wondtlook
them here.
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Variational symmetries

The key to finding conservation laws lies in finding symmetiiethe
problem.

» “symmetries” are the result of transformations under whieh
functional is invariant

» E.G. time invariance symmetry results in constent
» more generally, take a parameterized family of smooth foaurs
X=0(xy€), Y=0Xxye)
where
x=0(xy;0), y=0¢(xy;0)
e.g. we get the identity transform fer= 0

» exampledranslations androtations
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Jacobian

The Jacobian is
Bx 6y

& @

» smooth: if functionsx andy have continuous partial derivatives.

» non-singular: if Jacobian is non-zero (and hence an inverse
transform exists)

Now for € = 0, we require the identity transform, de= 1. Also, we
require a smooth transform, das a smooth function of, and so for
sufficiently smallg|, the transform is non-singular.
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Example transformations

» translations (¢ is the translation distance)

X = X+¢ Y =y

cy, X YExrEY)

Y
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Example transformations

» translations (g is the translation distance)

X = X+¢ Y =Yy
or X = X Y = y+e¢

both have Jacobian

J=1
and inverse transformations
X = X-—¢€ y =Y
or x = X y = Y-—¢
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Example transformations

» translations (g is the translation distance)

X = X+¢ Y =Y

.(x,y)
X,Y)=(x+E&,y)
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Example transformations

» rotations (¢ is the rotation angle)
X =Xxcose+ysine Y = —xsinge+ycose

has Jacobian
J=coSe+sife=1

and inverse

Xx=Xcoss—Ysinge y=Xsine+Ycose
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Example transformations

» rotations (¢ is the rotation angle)
X =xcose+ysinge Y = —xsinge+ycose

To derive this, change coordinates to polar coordinates
x=rcogB) and y=rsin(0)
Under a rotation byg, the new coordinatesX,Y) are
X=rcos(0—¢) and Y =rsin(B—¢)
Use trig. identities cqsl — v) = cosucosv+ sinusinv and
sin(u—v) = sinucosv — cosusiny, to get
X = rcog0)coge)+rsin(B)sin(e) = xcoge) +ysin(e)
Y = rsin(@)coge) —rcogB)sin(e) = ycoge) — xsin(g)
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Example transformations

» rotations (¢ is the rotation angle)

‘ X =Xxcose+ysinge Y = —xsSinge+ycose

y
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Transformation of a function

Given a functiory(x), we can rewrité/ (X) using the inverse
transformation, e.g.

@ (X, Y(X):e) = y(x) = y(8H(X,Y;€))
For example, taking the curye= x under rotations
Xsing+Y cose = Xcose — Y sing
which we rearrange to get

_ COst—sing
 cose+sing

Y(X)

Similarly we can derivér’(X)
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Transform invariance

If . “
[ty )= [ R YY) ax
Xo Xo

for all smooth functiong(x) on [xo,X;] then we say that the functional in
invariant under the transformation.

» also calledvariational invariance

» The transform is called @ariational symmetry

» Related to conservation laws

Also note that the E-L equations are invariant under sucharesform, e.g.
they produce the same extremal curves.
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Examples

» translations:

(XaY) =
or (X)Y) =

» rotations:

X =0(x,y;€) =xcoss+ysine Y =@X,y;€) = —XSing+ycose

So
00
E ; % e=0
09
L g e=0

= —Xsine4ycostel,_, = Yy

= —XCOSE—ySing|,_, = —X
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Infinitesimal generators

For smalle we can use Taylor’'s theorem to write

X = 9(x,y;0)+s@ +0(g?)
(xy,0)
0
Y = exy0+est| 40
€loxyo)
Define the infinitesimal generators
00 o0}
E(X7y> = e r](XJ) = 3
08 [ r0) 08 | xy:0)
and then for smakt
X ~ x+¢€&
Y ~ y+en
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Emmy Noether

» Amalie Emmy Noether, 23 March 1882 — 14 April
1935

» Described by Einstein and many others as the most
important woman in the history of mathematics.

» Most of her work was in algebra

» Worked at the Mathematical Institute of Erlangen
without pay for seven years

» Invited by David Hilbert and Felix Klein to join the
mathematics department at the University of
Gottingen, a world-renowned center of
mathematical research. The philosophicqgal faculty
objected, however, and she spent four years
lecturing under Hilbert's name.
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Noether’'s theorem

Suppose thé (x,y,Y') is variationally invariant offiXo, 1] under a
transform with infinitesimal generatoésandn, then

np—¢&H = congt

along any extremal of

F{y}=/:f<x,y,y>dx
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Example (ii)

Invariance in translations ip i.e.

X,Y) = (xy+e)
&n) = (0,1

So, a system with such invariance has
p = congt

which is what we showed earlier regarding functionals wittemplicit
dependence on
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Example (i)

Invariance in translations ix i.e.

(X,Y) = (X+¢&y)
(&n) = (1,0

So, a system with such invariance has
H = const

which is what we showed earlier regarding functionals witterplicit
dependence ox

Variational Methods & Optimal Control: lecture 25 — p.22/29

More than one dependent variable

Transforms with more than one dependent variable
T = 6(t,q;¢)
Q = &lt,a5e)

and the infinitesimal generators are

00
S = gszo
L0
Nk = Es:O
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More than one dependent variable

Noether’s theorem: Suppokét, q,q) is variationally invariant orito, t;]
under a transform with infinitesimal generatgrandny. Given
oL oo,
P=—, H= PkQy — L
a4, kZl
Then

n

z pxNk —HE = congt
K=1

along any extremal of

F{q}=/t:lL(t,q,d)d
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Common symmetries

Given a system in 3D with Kinetic Enerdy(q) = 3m (qi - (':12 + qi) , and
Potential Energy/ (t,q).
» invariance ofL under time translations corresponds to conservation
of Energy

» invariance ofL under spatial translations corresponds to
conservation of momentum

» invariance ofL under rotations corresponds to conservation of
angular momentum
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Example: rotations

Invariance in rotations, i.e.

(T,Q1,Q2) = (t,01COSE+ 2 SINE, —01 SINE + O COSE)
(t,on,02) = (T,Qicose— Qysing,Qqsine+ Q,COSE)

The infinitesimal generators are

& =0
N1 = —MSINE+QeCOSEl,_g = Q2
N2 = —QiCOSE—QpSingl,_, = —01

So, a system with such invariance has

2
Zpir]i —HE = p1gz — p201 = const
=

Soangular momentumin conserved.
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Finding symmetries

Testing for non-trivial symmetries can be tricky.
Useful result is thdkund-Trautman identity:
It leads also to a simple proof of Noether’s theorem
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More advanced cases

» Laplace-Runge-Lenz vector in planetary motion correspaad
rotations of 3D sphere in 4D

» symmetries in general relativity

v

symmetries in quantum mechanics
» symmetries in fields
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