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Conservation Laws
One of the more exciting things we can derive relates to fundamental
physics laws: conservation of energy, momentum, and angular
momentum. We can now derive all of these from an underlying principle:
Noether’s theorem.
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Hamilton’s principle

We now have a group of equivalent methods
Euler-Lagrange equations

Hamilton’s equations

Hamilton-Jacobi equation

We saw earlier that these can give us other methods
Hamilton’s principle⇒ Newton’s laws of motion

WhenL is not explicitly dependent ont, then the HamiltonianH is
constant in time.

conservation of energy
this is an illustration of a symmetry in the problem appearing in
the Hamiltonian
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Conservation laws

Given the functional

F{y}=
∫ x1

x0

f (x,y,y′, . . . ,y(n))dx

if there is a functionφ(x,y,y′, . . . ,y(k)) such that

d
dx

φ(x,y,y′, . . . ,y(k)) = 0

for all extremals ofF, then this is called akth order conservation law

use obvious extension for functionals of several dependentvariables.
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Conservation law example

Given the functional

F{y}=
∫ x1

x0

f (y,y′)dx

where f is not explicitly dependent ont, we know that the Hamiltonian

H = y′
∂ f
∂y′

− f

is constant, and so
dH
dx

= 0

is a first order conservation law for the system.
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Several independent variables

For functionals of several independent variables, e.g.

F{z}=
∫∫

Ω
z(x,y)dxdy

the equivalent conservation law is

∇ ·φ = 0

For some functionφ(x,y,z,z′, . . . ,z(k)).

Results here can be extended to these cases, but we won’t lookat
them here.
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Conservation laws

physically interesting
tell you about system of interest

can simplify solution

φ(x,y,y′, . . . ,y(k)) = const is an orderk DE, rather than E-L
equations which are order 2n

φ(x,y,y′, . . . ,y(k)) = const is often called thefirst integral of the
E-L equations

RHS is a constant of integration (determined by boundary
conditions)

how do we find conservation laws?
Noether’s theorem
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Variational symmetries

The key to finding conservation laws lies in finding symmetries in the
problem.

“symmetries” are the result of transformations under whichthe
functional is invariant

E.G. time invariance symmetry results in constantH

more generally, take a parameterized family of smooth transforms

X = θ(x,y;ε), Y = φ(x,y;ε)

where
x = θ(x,y;0), y = φ(x,y;0)

e.g. we get the identity transform forε = 0

examplestranslations androtations
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Jacobian

The Jacobian is

J =

∣

∣

∣

∣

∣

θx θy

φx φy

∣

∣

∣

∣

∣

= θxφy −θyφx

smooth: if functionsx andy have continuous partial derivatives.

non-singular: if Jacobian is non-zero (and hence an inverse
transform exists)

Now for ε = 0, we require the identity transform, soJ = 1. Also, we
require a smooth transform, soJ is a smooth function ofε, and so for
sufficiently small|ε|, the transform is non-singular.
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Example transformations

translations (ε is the translation distance)

X = x+ ε Y = y

or X = x Y = y+ ε

both have Jacobian
J = 1

and inverse transformations

x = X − ε y = Y

or x = X y = Y − ε
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Example transformations

translations (ε is the translation distance)

X = x+ ε Y = y

ε(X,Y)=(x+  ,y)

y

x

ε
(x,y)
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Example transformations

translations (ε is the translation distance)

X = x+ ε Y = y

ε

Y y

X x

(X,Y)=(x+  ,y)ε
(x,y)
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Example transformations

rotations (ε is the rotation angle)

X = xcosε+ ysinε Y =−xsinε+ ycosε

has Jacobian
J = cos2 ε+sin2 ε = 1

and inverse

x = X cosε−Y sinε y = X sinε+Y cosε
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Example transformations

rotations (ε is the rotation angle)

X = xcosε+ ysinε Y =−xsinε+ ycosε
y

x
ε

(x,y)

Y

X
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Example transformations

rotations (ε is the rotation angle)

X = xcosε+ ysinε Y =−xsinε+ ycosε

To derive this, change coordinates to polar coordinates

x = r cos(θ) and y = r sin(θ)

Under a rotation byε, the new coordinates(X ,Y) are

X = r cos(θ− ε) and Y = r sin(θ− ε)

Use trig. identities cos(u− v) = cosucosv+sinusinv and
sin(u− v) = sinucosv−cosusinv, to get

X = r cos(θ)cos(ε)+ r sin(θ)sin(ε) = xcos(ε)+ ysin(ε)
Y = r sin(θ)cos(ε)− r cos(θ)sin(ε) = ycos(ε)− xsin(ε)
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Transformation of a function

Given a functiony(x), we can rewriteY (X) using the inverse
transformation, e.g.

φ−1(X ,Y(X);ε) = y(x) = y(θ−1(X ,Y ;ε))

For example, taking the curvey = x under rotations

X sinε+Y cosε = X cosε−Y sinε

which we rearrange to get

Y (X) =
cosε−sinε
cosε+sinε

X

Similarly we can deriveY ′(X)
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Transform invariance

If ∫ x1

x0

f (x,y,y′(x))dx =
∫ X1

X0

f (X ,Y,Y ′(X))dX

for all smooth functionsy(x) on [x0,x1] then we say that the functional in
invariant under the transformation.

also calledvariational invariance

The transform is called avariational symmetry

Related to conservation laws

Also note that the E-L equations are invariant under such a transform, e.g.
they produce the same extremal curves.
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Infinitesimal generators

For smallε we can use Taylor’s theorem to write

X = θ(x,y;0)+ ε
∂θ
∂ε

∣

∣

∣

∣

(x,y;0)

+O(ε2)

Y = φ(x,y;0)+ ε
∂φ
∂ε

∣

∣

∣

∣

(x,y;0)

+O(ε2)

Define the infinitesimal generators

ξ(x,y) =
∂θ
∂ε

∣

∣

∣

∣

(x,y;0)

η(x,y) =
∂φ
∂ε

∣

∣

∣

∣

(x,y;0)

and then for smallε
X ≃ x+ εξ
Y ≃ y+ εη
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Examples

translations:

(X ,Y) = (x+ ε,y) ⇒ (ξ,η) = (1,0)

or (X ,Y) = (x,y+ ε) ⇒ (ξ,η) = (0,1)

rotations:

X = θ(x,y;ε) = xcosε+ ysinε Y = φ(x,y;ε) =−xsinε+ ycosε

So

ξ =
∂θ
∂ε

∣

∣

∣

∣

ε=0

= −xsinε+ ycosε|ε=0 = y

η =
∂φ
∂ε

∣

∣

∣

∣

ε=0

= −xcosε− ysinε|ε=0 = −x
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Emmy Noether

Amalie Emmy Noether, 23 March 1882 – 14 April

1935

Described by Einstein and many others as the most

important woman in the history of mathematics.

Most of her work was in algebra

Worked at the Mathematical Institute of Erlangen

without pay for seven years

Invited by David Hilbert and Felix Klein to join the

mathematics department at the University of

Göttingen, a world-renowned center of

mathematical research. The philosophicqal faculty

objected, however, and she spent four years

lecturing under Hilbert’s name.
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Noether’s theorem

Suppose thef (x,y,y′) is variationally invariant on[x0,x1] under a
transform with infinitesimal generatorsξ andη, then

ηp−ξH = const

along any extremal of

F{y}=
∫ x1

x0

f (x,y,y′)dx
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Example (i)

Invariance in translations inx, i.e.

(X ,Y) = (x+ ε,y)
(ξ,η) = (1,0)

So, a system with such invariance has

H = const

which is what we showed earlier regarding functionals with no explicit
dependence onx.
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Example (ii)

Invariance in translations iny, i.e.

(X ,Y) = (x,y+ ε)
(ξ,η) = (0,1)

So, a system with such invariance has

p = const

which is what we showed earlier regarding functionals with no explicit
dependence ony.
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More than one dependent variable

Transforms with more than one dependent variable

T = θ(t,q;ε)
Qk = φk(t,q;ε)

and the infinitesimal generators are

ξ =
∂θ
∂ε

∣

∣

∣

∣

ε=0

ηk =
∂φk

∂ε

∣

∣

∣

∣

ε=0
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More than one dependent variable

Noether’s theorem: SupposeL(t,q,
.
q) is variationally invariant on[t0, t1]

under a transform with infinitesimal generatorsξ andηk. Given

p =
∂L

∂.qk

, H =
n

∑
k=1

pk
.
qk −L

Then n

∑
k=1

pkηk −Hξ = const

along any extremal of

F{q}=
∫ t1

t0
L(t,q,

.
q)dt
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Example: rotations

Invariance in rotations, i.e.

(T,Q1,Q2) = (t,q1cosε+q2 sinε,−q1sinε+q2 cosε)
(t,q1,q2) = (T,Q1cosε−Q2sinε,Q1sinε+Q2cosε)

The infinitesimal generators are

ξ = 0

η1 = −q1sinε+q2cosε|ε=0 = q2

η2 = −q1cosε−q2 sinε|ε=0 = −q1

So, a system with such invariance has
2

∑
i=1

piηi −Hξ = p1q2− p2q1 = const

Soangular momentum in conserved.
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Common symmetries

Given a system in 3D with Kinetic EnergyT (
.
q) = 1

2m
(.

q
2
1+

.
q

2
2+

.
q

2
3

)

, and

Potential EnergyV (t,q).

invariance ofL under time translations corresponds to conservation
of Energy

invariance ofL under spatial translations corresponds to
conservation of momentum

invariance ofL under rotations corresponds to conservation of
angular momentum

Variational Methods & Optimal Control: lecture 25 – p.27/??



Finding symmetries

Testing for non-trivial symmetries can be tricky.
Useful result is theRund-Trautman identity:
It leads also to a simple proof of Noether’s theorem
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More advanced cases

Laplace-Runge-Lenz vector in planetary motion corresponds to
rotations of 3D sphere in 4D

symmetries in general relativity

symmetries in quantum mechanics

symmetries in fields
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