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Conservation Laws

One of the more exciting things we can derive relates to foreddal
physics laws: conservation of energy, momentum, and angula

momentum. We can now derive all of these from an underlyimgcpple:
Noether’s theorem.
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Hamilton’s principle

We now have a group of equivalent methods
B Euler-Lagrange equations

B Hamilton’s equations
B Hamilton-Jacobi equation

We saw eatrlier that these can give us other methods
B Hamilton’s principle= Newton’s laws of motion

® WhenL is not explicitly dependent o then the Hamiltoniai is
constant in time.

B conservation of energy

W this is an illustration of a symmetry in the problem appegarm
the Hamiltonian
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Conservation laws

Given the functional

F{y}Z/Mf(xay,x/,---,y(”))dx

X0
if there is a functiorp(x,y,Y, ...,y*) such that

d

Bl )y =
dX(p(X7y7y,7”’7y ) O

for all extremals of, then this is called &th order conservation law

B use obvious extension for functionals of several dependetdbles.
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Conservation law example

Given the functional

F{y}=/XOX1f(y,>/)d><

wheref is not explicitly dependent o we know that the Hamiltonian
of
H=y ——f
y oy

IS constant, and so
dH B

F i

IS a first order conservation law for the system.

0
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Several iIndependent variables

For functionals of several independent variables, e.g.

F{z} = [ 2xy) ey

the equivalent conservation law is
[1.-9=0

For some functiomp(x,y,z,Z,...,z").

B Results here can be extended to these cases, but we wondtilook
them here.
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Conservation laws

B physically interesting
m tell you about system of interest
B can simplify solution

® QX VY,...,y¥) =cong is an ordek DE, rather than E-L
equations which are orden2

moxyY,...,y%) = cond is often called thdirst integral of the
E-L equations

B RHS is a constant of integration (determined by boundary
conditions)

® how do we find conservation laws?
®m Noether's theorem
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Variational symmetries

The key to finding conservation laws lies in finding symmaetrrethe
problem.
B “symmetries” are the result of transformations under witingh
functional is invariant

B E.G. time invariance symmetry results in constant
B more generally, take a parameterized family of smooth foans

X = e(X7 Y; 8)7 Y = (P(X, Y; 8)

where
X=0(x,y;0), y=0@xV.0)

e.g. we get the identity transform fer=0
B examplegranslations androtations
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Jacobian

The Jacobian is
Ox 6y

B B

B smooth: if functionsx andy have continuous partial derivatives.

J= = Ox@y, — Oy,

B non-singular: if Jacobian is non-zero (and hence an inverse
transform exists)

Now for € = 0, we require the identity transform, do= 1. Also, we
require a smooth transform, das a smooth function of, and so for
sufficiently smallle|, the transform is non-singular.
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Example transformations

B translations (€ is the translation distance)

X = X+¢€ Y =Y
or X = X Y = Yy+E¢

both have Jacobian
J=1

and inverse transformations

X = X—¢ y =Y
or x = X y = Y—¢
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Example transformations

B translations (€ is the translation distance)

X = X+¢€ Y =Y

(x,y). »(.X,Y)=(x+ E,y)
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Example transformations

B translations (€ Is the translation distance)

X = X+¢€ Y =Y

.(x,y)
(X,Y)=(x+E,y)
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Example transformations

M rotations (€ is the rotation angle)
X =Xxcose+Yysing Y = —XSINE+ YCOSE

has Jacobian
J=coSe+sire=1

and inverse

X=Xcos—Ysing y=XsinE+Y Ccose
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Example transformations

M rotations (€ is the rotation angle)

A X =Xxcose+Yysing Y = —XSINE+ YCOSE

Y
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Example transformations

M rotations (€ is the rotation angle)
X =Xxcose+Yysing Y = —XSINE+ YCOSE

To derive this, change coordinates to polar coordinates
X=rcog0) and y=rsin9)
Under a rotation by, the new coordinates<,Y) are
X=rcos(0@—¢) and Y =rsin(B—¢)

Use trig. identities cdsl — v) = cosucosv+ sinusinv and
sin(u— v) = sinucosv — cosusiny, to get

X = rcog0)coge)+rsin(B)sin(e) = xcoge) + ysin(g)
Y = rsin(0)coge)—rcog0)sine) =ycoge) — xsin(g)
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Transformation of a function

Given a functiory(x), we can rewritéy (X) using the inverse
transformation, e.g.

@ (X, Y(X);e) = y(x) = y(67H(X,Y;¢))
For example, taking the curye= x under rotations
Xsing+Y coss = Xcose —Ysing
which we rearrange to get

~ COsE— sing

— —X
COSE +SINE

Y (X)

Similarly we can deriv&’ (X)
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Transform invariance

If

/Xoxl F(x,y,Y/(X)) d = ):1 FX,Y,Y' (X)) dX

for all smooth functiong(x) on [xg,X1| then we say that the functional in
Invariant under the transformation.

B also calledvariational invariance

B The transform is called @ariational symmetry

B Related to conservation laws

Also note that the E-L equations are invariant under sucharesform, e.g.
they produce the same extremal curves.
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Infinitesimal generators

For smalle we can use Taylor's theorem to write

X = E)(x,y;O)Jrz-:g—e +0O(g?)
€1 (xy:0)
0
Y = @XY; O)+£a—(p +0(g?)
€1 (xy:0)
Define the infinitesimal generators
00 000
E(XY) = = nxy) = =
0¢ (x;0) 0¢ (%,y;0)
and then for smali
X ~ Xx+¢€&
Y ~ y+4e&n
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Examples

B translations:

H rotations:

X =0(X,y;e) =xcoss+ysine Y =q@(X,Y;€) = —XSINE+ YCOSE

So
00 .
§ = — = —XSINE+YyCOSE|,_5 = VY
o€ e=0
n = 99 = —XCOSE—YsIng = —X
os 0 e=0
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Emmy Noether

B Amalie Emmy Noether, 23 March 1882 — 14 April
1935

M Described by Einstein and many others as the most
important woman in the history of mathematics.

B Most of her work was in algebra

M Worked at the Mathematical Institute of Erlangen
without pay for seven years

M Invited by David Hilbert and Felix Klein to join the
mathematics department at the University of
Gottingen, a world-renowned center of
mathematical research. The philosophicqal faculty
objected, however, and she spent four years
lecturing under Hilbert’'s name.
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Noether’'s theorem

Suppose thd (x,y,Y) is variationally invariant onxg, X;| under a
transform with infinitesimal generato¢sandn, then

np—¢&¢H = congt

along any extremal of

F{y}=/X1f(X,y,>/)d><

X0
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Example (1)
Invariance in translations ix i.e.

(X,Y) = (X+¢g,y)
(E,r]) — (170)

So, a system with such invariance has
H = const

which is what we showed earlier regarding functionals wilerplicit
dependence ox
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Example (i)
Invariance in translations  i.e.

(X)Y) = (Xy+g)
(E,r]) — (071)

So, a system with such invariance has
p = const

which is what we showed earlier regarding functionals wilerplicit
dependence on
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More than one dependent variable

Transforms with more than one dependent variable

T = 0(,q;¢)
Qv = &(t,q;¢)

and the infinitesimal generators are

00
E B Eszo
oJ0%
Nk = Es:o
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More than one dependent variable

Noether's theorem: Suppokét, q,q) is variationally invariant orto, t;]
under a transform with infinitesimal generatgrandny. Given

oL no,
P=—, H= PO, — L
aq, kzl :
Then 0
Z PNk — HE = congt
K=1

along any extremal of

F{a} = t1L(t,q,<'1>dt

to
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Example: rotations

Invariance in rotations, I.e.

(T,Q1,Q2) = (t,01COSE+2SiNg, —Qs1 SiNE + (2 COSE)
(t,01,02) = (T,Qicose—Qsing, Q1sine+ Q,COSE)

The infinitesimal generators are

(¢ = 0
N1 = —1SINE4+pCOSE|,_, = O
N2 = —iCOsE—QpsSingl,_, = —O1

So, a system with such invariance has

2
leini —H¢ = p1g2 — p201 = const
=

Soangular momentum in conserved.

Variational Methods & Optimal Control: lecture 25 — p.28/



Common symmetries

Given a system in 3D with Kinetic Energy(d) = 2m (qi + C'é + qg) , and
Potential Energy/ (t,q).

B invariance ofL under time translations corresponds to conservation
of Energy

B invariance ol under spatial translations corresponds to
conservation of momentum

B invariance ofL under rotations corresponds to conservation of
angular momentum
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Finding symmetries

Testing for non-trivial symmetries can be tricky.
Useful result is thé&kund-Trautman identity:
It leads also to a simple proof of Noether’s theorem
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More advanced cases

B Laplace-Runge-Lenz vector in planetary motion correspdad
rotations of 3D sphere in 4D

B symmetries in general relativity
B symmetries in guantum mechanics
B symmetries in fields
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