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General control problem

Minimize functional
t1
F= fo(t,x,u) ct

to

subject to constrainte= f(t,x,u), or more fully,
).(i = fi(t,X,U)

» notice no dependence arin fy
> this differs from many CoV problems

» no dependence onin f; because we rearrange the equations so that
derivatives are on the LHS
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Pontryagin Maximum
Principle

Modern optimal control theory often starts from the PMPslaisimple,
concise condition for an optimal control.
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Pontryagin Maximum Principle (PMP)

Letu(t) be an admissible control vector that transfggsxg) to a target
(t1,X(t1)). Letx(t) be the trajectory correspondinguét). In order that
u(t) be optimal, it is necessary that there exists

p(t) = (pa(t), p2(t),..., pn(t)) and a constant scal@p such that

» p andx are the solution to the canonical system

>'<—a—H and 5 _oH
N P= "%

» where the Hamiltonian il = 3, p; fi with pg = —1
» H(x,u,p,t) > H(x,0,p,t) for all alternate control§
» all boundary conditions are satisfied
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PMP proof sketch

Consider the general problem: minimize functional

t
F{x,u} = /tl fo(t,x,u) ct
0

subject to constraints

x = fi(t,x,u)
We can incorporate the constraints into the functionalgite Lagrange
multipliersA;, e.g.

t n

F= /“L(t,x,;(,u)dt = J, fo®xu+3 MO [k - fitxu)]d

to to i=
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PMP proof sketch

By definition (in previous lectures) the Hamiltonian is

n
H(t,x,p,u) = Zpaki —L(t,x,X,u)
=

n

= _i pix — fo (t, X, ) _.Zl)\i(t) [% — fi(t,x,u)]

n
= _fO(t>X7u)+ p'f'(t,X,U)
i; i Ti

becausé; = p;, so thex; terms cancel. The final result is just the
Hamiltonian as defined in the PMP.
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PMP proof sketch

Given such a function we get (by definition)

oL
Pi 0% [

So we can identify the Lagrange multiplierswith the gener alized
momentum termsp;

» thep; are known in economics literature amr ginal valuation of
X or theshadow prices

» shows how much a unit inc[ementXrat timet contributes to the
optimal objective functionaf

» thep; are known in control aso-state variables (sometimes
written asz)
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PMP proof sketch

From previous slide the Hamiltonian can be written

n
H(taxap’u) = _fO(t7X7U)+ lel fi(t7X7u)
i=

which is the Hamiltonian defined in the PMP. Then the Candiiiela
equations (Hamilton’s equations) are

M_ox M dn
api_dt aXi_ dt

Note that the equatior&,g = ‘é—’t“ just revert to

fi(t,x,u) = X;

which are just the system equations.
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PMP proof sketch

Finally, note that Hamilton’s equations above only rebatand its
conjugate momenturg;. What about equations fax? Take the conjugate
variable to bez, and we get (by definition) that

oL
== _0
SR

and the second of Hamilton’s equations is therefore

oH dzi_

w - d

which suggests a stationary pointldfWRT u;. In fact we look for a
maximum (and note this may happen on the bounds)of
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PMP Example: plant growth

Minimize
11
F{u} :/ “ud

0 2

Subject tax(0) = 0, andx(1) = 2 and
x= fi(t,x,u)=1+u
Hamiltonian is
H = —fo(t,X,U)+pf1(t,X,U)

1
= —§u2+ p(1+u)
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PMP Example: plant growth

Plant growth problem:

» market gardener wants to plants to grow to a fixed height 2imvih
fixed window of time[0, 1]

» can supplement natural growth with lights (at night)
» growth rate dictates
X=1+u

» cost of lights

112
F{u}:/ Sud
0 2
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PMP Example: plant growth

Hamiltonian is
1
H=—Z-u*+p(l+u)

2
Canonical equations
oH dx oH dp
a_p = g and ™ =t
U U
1+u = X 0 = —-p

LHS =¢ system DE
RHS =¢p = 0 means thap = ¢; wherec; is a constant.
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PMP Example: plant growth

Maximum principle requiresl be a maximum, for which

oH
g~ utp=0

Sou=p,andX=1+Uso
X=(1+c)t+co
The solution which satisfieg0) = 0 andx(1) = 2 is
Xx=2

Sou = ¢; =1, and the optimal cost is/2.
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PMP and Transversal conditions

The resulting transversal condition is
09 N\ 09 _
Z(a—Xier.)éx. t_t1+<at H>6t i

1
» whent; is fixed andx(t;) is completely free we get

09
(@)

» whenx(t,) is fixed,dx = 0, and we get

(3

Special cases

=0, Vi

t=t;

=0

t=t,
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PMP and Transversal conditions

Typically we fixty andx(tp), but often the right-hand boundary condition
is not fixed, so we need transversal, or natural boundaryitions.. Here,
they differ from traditional CoV problems in two respects:

» The terminal cosp

» The functionfq is not explicitly dependent ox
The resulting transversal conditions are

09, \s, 99
Z(O_)q+p'>6x't:tl+<6t H)ét

=0

t=t,

for all alloweddx; andat.
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Example: stimulated plant growth

Plant growth problem:

» market gardener wants to plants to grow as much as possittigwi
a fixed window of timg0, 1]

» supplement natural growth with lights as before

» growth rate dictatek=1+u
» cost of lights

F{u} = /Ol%u(t)zd

» value of crop is proportional to the height

O(tr, X(t)) = x(ta)
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Plant growth problem statement

Write as a minimization problem

1
F{ux} = —x(t1)+/ lea
0 2

Subject tox(0) = 0,
X=1+u
» the terminal cost doesn't affect the shape of the solution
» but we need a natural end-point condition tipr
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Autonomous problems

Autonomous problems have no explicit dependence on
» time invariance symmetry
» henceH is constant along the optimal trajectory

» if the end-time is free (and the terminal cost is zero) then th
transversality conditions ensuirfe= 0 along the optimal trajectory.
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Plant growth: natural boundary cond.

The problem is solved as before, but we write the natural Gann

condition atx =t; as
do
(5)

_1+ p‘t:tl =0

=0, Vi

t=t,

which reduces to

Givenp is constant, this sefs(t) = 1, and hence the contral= 1 (as
before).
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PMP Example: Gout

Optimal Treatment of Gout:

» disease characterized by excess of uric acid in blood
> define level of uric acid to br(t)
> in absence of any control, tends to 1 according to

X=1-X
» drugs are available to control disease (contol
X=1-x-u

> aim to reducex to zero as quickly as possible
> drug is expensive, and unsafe (side effects)
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PMP Example: Gout

Formulation: Minimize
0] 1
Fiup= [ 50 +B)a
0 2

given constank that measures the relative importance of the drugs cost vs
the terminal time. End-conditions ax€0) = 1, and we wislx(t;) =0,
with t; free. The constraint equation is

X=1—-x—u
Hamiltonian

H= —:—ZL(k2+u2)+ p(1—x—u)
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PMP Example: Gout

Note
» thisis an autonomous problem Blo= const
» thisis a free end-time problem $b=0

Substitute values gb andu intoH fort =0 (i.e. p=c¢; = —u, and
x(0) = 1), and we get

H = —E(k2+u2)+p(1—x—u)
K
- 72
=0

and soc; = £k
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PMP Example: Gout

Canonical equations

a_H — d_X and a_H — _d_p
ap dt 0x dt
) \
1-x—u = X -p = —-p

LHS =¢ system DE
RHS =¢p = p has solutiorp = ¢, €
Now maximizeH wrt to u, i.e., find stationary point

a—H:—u—p:O

Sou= —p=—c¢&
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PMP Example: Gout

Finally solvex = 1 —x— u whereu = —ké to get

k, k_, .
x_1—§é+§e = 1—Kksinht

The terminal condition ig(t;) = 0, and so
ty = sinh 1(1/k)

» whenkis small the prime consideration is to use a small amount of
the drug, and ak — 0O thent; —

> no optimal fork =0

» whenkis large, we want to get to a safe level as fast as possible, so
ask — o we gett; ~ 1/k
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PMP Example: Lunar lander

Atari game, 1979

http://ww. kl ov. com gane_det ai | . php?l etter=L&gane_i d=8465
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PMP Example: Lunar lander

System defined (at any timigby
» positiony
» velocityy
State equations (massacceleration = force)
MYy = Mg+ f
Initial state
y(0)=h, and y(0)=v
Desired final statet{ is free)
y(t:)=0 and y(t1) =0

and we wish to minimize

Firy= [ Ifla
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PMP Example: Lunar lander

» need to land surface-module on the moon
> Module masdM (ignore fuel load), uniform gravitational
acceleratiorg (might not be 98m/s?)
> initial heighty(0) = h
> initial velocity y(0) = v
» controlled descent so landing is “soft”

> height of module, and downward velocity brought to zero
simultaneously

» thrustf either up or down
> thrustis bounded, sid | < fmax
> want to minimize fuel costf| over time
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PMP Example: Lunar lander

Convert the problem to standard form by taking

X1 =Y
Xo = )./
u = f/M

So the state equation becomes

).(1 = X2

X, = —g+u
And the initial and final conditions are

x1(0)=h and x(0)=v
x1(t1) =0 and Xx(t;) =0
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http://www.klov.com/game_detail.php?letter=L&game_id=8465

PMP Example: Lunar lander

Hamiltonian
H = —|ul+ pix2 + p2(u—Q)

Canonical equations
oH  dx oH  dp
- Mo W

Give the constraints, = x, andX, = —g-+uand

oH .
- 0T
oH o
aXZ - pl_ p2

Solutionp; = ¢; andp, = —Cit + Co.
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PMP Example: Lunar lander

Maximize f (u) = —|u| + ppu, with |u] <1
» three possible locations for a maximum
> left or right boundary, ou =0
» The three values (in order from left to right) are
f(uy=-1-pz, 0, —1+p2
» Threecasep, < —1,—-1l<pa<lorp,>1
» maximum occurs at

+1, ifp>1
U= 0, if-1<p<l
-1, ifp<-—1

» If bounds argu| < fynax/M, then the solution scales.
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PMP Example: Lunar lander

Now we have to chooseto maximizeH
» |u| is bounded byfmax/M

Ignore the terms i that are constant WRT twand we have to
maximize—|u| + pou.
10

5k

ok

-5k

—-10f

—15F

—-20F

-25k
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PMP Example: Lunar lander

Call p, a switching function, and note that we have
P2 =—Cit+C2
» during the final descent; < 0
> we must be going down just before we land
» butx(t;) =0, soX; > 0 neart;
> we must be decelerating, so that we stop at

> hence we must have positive thrust
> optimal thrust must be at max, elg= fnax/M

» so the equations for motion during final descent are
).(1 = X
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PMP Example: Lunar lander

Given final conditions the solution near landing is

vvyyvyy

xlzgk(t—tl)z and xp =k(t —t;)

notek > 0 in final stages of landing
noteu = fmax/M in final stages of landing
givenp, = —cit + ¢, we must have; < 0
hence prior stages of control include
> a stage when = 0 (free fall)
> a stage when = — fiha/M (accelerating down)

in each stage we get an equation as above, but with different
constank, for u= 0 andu = — fax/M the constank < 0
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PMP Example: Lunar lander

Solution:

» if start above, or on the critical curve

> if travelling upwards, max thrust down to cancel upwards
velocity

> then free-fall, until on the critical curve
1 2
X1 = Ek(t —t]_) and x = k(t —tl)

> max thrust up until stop on the surface

» if lie below the critical curve
> you crash
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PMP Example: Lunar lander

50

start point

deceleration

_5 .
X, = velocity
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PMP Example: Lunar lander

» What's the point of this example
> previously, we couldn’t easily deal with and objective like
> the function isn’t “smooth”
> PMP can work for such examples
>

it doesn’t require smoothness, you just need to be able tafind
maximum

Variational Methods & Optimal Control: lecture 26 — p.37/37




	
	General control problem
	Pontryagin Maximum Principle (PMP)
	PMP proof sketch
	PMP proof sketch
	PMP proof sketch
	PMP proof sketch
	PMP proof sketch
	PMP Example: plant growth
	PMP Example: plant growth
	PMP Example: plant growth
	PMP Example: plant growth
	PMP and Transversal conditions
	PMP and Transversal conditions
	Example: stimulated plant growth
	Plant growth problem statement
	Plant growth: natural boundary cond.
	Autonomous problems
	PMP Example: Gout
	PMP Example: Gout
	PMP Example: Gout
	PMP Example: Gout
	PMP Example: Gout
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	PMP Example: Lunar lander
	
	PMP Example: Lunar lander

