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Pontryagin Maximum
Principle

Modern optimal control theory often starts from the PMPslaisimple,
concise condition for an optimal control.
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General control problem

Minimize functional
€]

F= ] fo(t,x,u)d

to

subject to constraints = f(t,x,u), or more fully,

X = fi(t,x,u)

B notice no dependence arin fg
B this differs from many CoV problems

B no dependence onin f; because we rearrange the equations so that
derivatives are on the LHS
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Pontryagin Maximum Principle (PMP)

Letu(t) be an admissible control vector that transf@ggsxp) to a target
(t1,X(t1)). Letx(t) be the trajectory correspondingudt). In order that
u(t) be optimal, it is necessary that there exists

p(t) = (pr(t), p2(t),..., pn(t)) and a constant scal@p such that

B p andx are the solution to the canonical system

X = oH and p= _oH
~ ap P= "%
m where the Hamiltonian ibl = S p; fi with po = —1
m H(x,u,p,t) >H(x,0,p,t) for all alternate controls

m all boundary conditions are satisfied
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PMP proof sketch

Consider the general problem: minimize functional

6]
F{x,u} = [ fo(t,x,u)d
to
subject to constraints
We can incorporate the constraints into the functionalgitne Lagrange
multipliersaA;, e.g.

~ 5} . | N .
F=/ Ltxxud=/[ fot,x,u)+ Z)\i(t) % — fi(t,x,u)]
|=

to to
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PMP proof sketch

Given such a function we get (by definition)

oL
Pi 0% i

So we can identify the Lagrange multipliexswith the gener alized

momentum termsp;

W the p; are known in economics literature asr ginal valuation of
X; or theshadow prices

B shows how much a unit inc[ementXrat timet contributes to the
optimal objective functiondat

B the p; are known in control aso-state variables (sometimes
written asz)
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PMP proof sketch

By definition (in previous lectures) the Hamiltonian is

H(t,x,p,u) = i pi).(i —L(t,X,).(,U)
_ i pi% — fo (t,X,u) — i)\i(t) % — fi(t,x,u)]
— fo(t,x,u)+ipi fi(t,x,u)

becausé\ = p;, so thex; terms cancel. The final result is just the
Hamiltonian as defined in the PMP.
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PMP proof sketch

From previous slide the Hamiltonian can be written

n
H(t,X,p,U) — —fo(t,X,U) T lel fi(t,X,U)
=

which is the Hamiltonian defined in the PMP. Then the Candiiiela
equations (Hamilton’s equations) are

oH o dx; oH o dpi
op;  dt and ox,  dt

Note that the equatior% = ‘fj—’t“ just revert to

fi(t7X7u> — )ZI

which are just the system equations.
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PMP proof sketch

Finally, note that Hamilton’s equations above only rebatend its
conjugate momenturp;. What about equations fat? Take the conjugate

variable to be, and we get (by definition) that

L
a—a—zo

ol
and the second of Hamilton’s equations is therefore

oH dz
au -t D

which suggests a stationary pointldf\WRT u;. In fact we look for a
maximum (and note this may happen on the boundsg)of
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PMP Example: plant growth

Plant growth problem:

B market gardener wants to plants to grow to a fixed height 2imvéh
fixed window of time|0, 1]

B can supplement natural growth with lights (at night)

m growth rate dictates
X=1+u

B cost of lights

112
F{u}:/ —u“d
0o 2
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PMP Example: plant growth
Minimize ,
F{u}:/O %uzct
Subject tax(0) = 0, andx(1) = 2 and
x= fi(t,x,u)=1+u
Hamiltonian is
H = —fo(t,x,u)+ pfi(t,x u)

1
— —§u2+ p(1+u)
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PMP Example: plant growth

Hamiltonian is

1
H= —§u2+ p(1+u)

Canonical equations

a_H — d_X and a_H — _d_p
ap dt 0X dt
$ 4
1+u = X 0 = —-p

LHS =¢ system DE
RHS =¢p = 0 means thap = ¢; wherec; is a constant.
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PMP Example: plant growth

Maximum principle requiresl be a maximum, for which

oH
m——u+p_0

Sou=p,andx=1+4uso
X=(14ci)t+0C
The solution which satisfieg0) = 0 andx(1) = 2 is
X=21

Sou=c; =1, and the optimal cost is/2.
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PMP and Transversal conditions

Typically we fixty andx(tp), but often the right-hand boundary condition
IS not fixed, so we need transversal, or natural boundaryittonsl. Here,
they differ from traditional CoV problems in two respects:

B The terminal cosfp

B The functionfy is not explicitly dependent ox
The resulting transversal conditions are

op  \ . [0
Z(a—)(i+p.>6>qttl+<at H)Bt

=0

t=t;

for all alloweddx andot.
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PMP and Transversal conditions

The resulting transversal condition is
0Q 0p
> (axi +p.) OXi t:tl+ (at >6t

|
B whent; is fixed andx(t;) is completely free we get

o0y
<0_>q+p')

B whenx(ty) is fixed,dx; = 0, and we get
0
(5*)
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=0

t=t;

Special cases

=0, Vi

t=t;

=0

t=t;




Example: stimulated plant growth

Plant growth problem:

B market gardener wants to plants to grow as much as possithiawi
a fixed window of timegO, 1]

B supplement natural growth with lights as before

B growth rate dictatex = 1+ u
B cost of lights

1 1 5
F{u} :/ “u(t)?d
0o 2
B value of crop is proportional to the height

Oty, X(t1)) = x(ta)
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Plant growth problem statement

Write as a minimization problem

1
F{u,x} = —x(t1)+/ %uzdt
0

Subject tax(0) = 0,

X=1+u

B the terminal cost doesn't affect the shape of the solution
B but we need a natural end-point conditiontfpr
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Plant growth: natural boundary cond.

The problem is solved as before, but we write the natural daon

condition atx =t; as
0
(3 +7)

_1—|_ p‘t:tl — O

—0, Vi

t=t;

which reduces to

Given p is constant, this sefg(t) = 1, and hence the contral= 1 (as
before).
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Autonomous problems

Autonomous problems have no explicit dependence on
B time invariance symmetry
B henceH is constant along the optimal trajectory

m if the end-time is free (and the terminal cost is zero) then th
transversality conditions ensure= 0 along the optimal trajectory.
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PMP Example: Gout

Optimal Treatment of Gout:

B disease characterized by excess of uric acid in blood
m define level of uric acid to br(t)
B in absence of any control, tends to 1 according to

X=1-X
B drugs are available to control disease (contol
X=1-X—u

B aim to reducexto zero as quickly as possible
B drug is expensive, and unsafe (side effects)
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PMP Example: Gout

Formulation: Minimize
{1 1
F{U}Z/ ~(K+u”)dk
o 2

given constank that measures the relative importance of the drugs cost vs
the terminal time. End-conditions ax€0) = 1, and we wislx(t;) = 0,
with t; free. The constraint equation is

X=1—X—uU

Hamiltonian
1

(2 4+12) £ p(1—x—)

H =
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PMP Example: Gout

Canonical equations

a_H — d_X and a_H — d_p
op dt 0X dt
U U
1-Xx—u = X -p = —p

LHS =¢, system DE
RHS =¢p = p has solutiorp = ¢;€
Now maximizeH wrt to u, I.e., find stationary point

oH
55 = u-p=0

Sou=—p=—c €&
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PMP Example: Gout

Note
B this is an autonomous problem Blo= const

B this is a free end-time problem $b=0

Substitute values gb anduintoH fort =0 (i.e. p=c¢; = —u, and
X(0) = 1), and we get

1
H = —é(k2+u2)+p(l—x—u)
k* ¢
- 22

and soc; = +k
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PMP Example: Gout

Finally solvex = 1 — x— u whereu = —ke' to get

k k
—1— -4+ —et=1—ksinht
X ¢ 15

The terminal condition ig(t;) = 0, and so
t; = sinh *(1/k)

B whenk is small the prime consideration is to use a small amount of
the drug, and ak — 0 thent; — oo

®m no optimal fork =0

B whenk s large, we want to get to a safe level as fast as possible, so
ask — oo we gett; ~ 1/k
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PMP Example: Lunar lander

Atari game, 1979

ALTITUDE [S=i=1S]
HORIZOMTAL SPEED [m]
VERTICaL SPEEDR == .L

http://ww.kl ov.com ganme_det ai |l . php?l etter=L&ganme | d=8465
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http://www.klov.com/game_detail.php?letter=L&game_id=8465

PMP Example: Lunar lander

B need to land surface-module on the moon

B Module mas#M (ignore fuel load), uniform gravitational
acceleratioy (might not be Bm/s?)

| initial heighty(0) =h
® initial velocity y(0) = v
B controlled descent so landing is “soft”

® height of module, and downward velocity brought to zero
simultaneously

B thrustf either up or down
m thrustis bounded, sd | < frax
m want to minimize fuel costf | over time
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PMP Example: Lunar lander

System defined (at any timgby
M positiony
m velocityy
State equations (massacceleration = force)
My = —-Mg+ f
Initial state
y(0)=h, and y(0)=v
Desired final statet{ is free)
y(ti) =0 and y(t1) =0
and we wish to minimize

t
F{f}=/ |If|ld
0
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PMP Example: Lunar lander

Convert the problem to standard form by taking

X1 =Y
Xo = )./
u = f/M

So the state equation becomes

).(1 = X

).(2 — _g‘l_ u
And the initial and final conditions are

X1(0)=h and xz(0)=v
X1(t1) =0 and Xxo(t1) =0
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PMP Example: Lunar lander

Hamiltonian
H = —[u| + p1x2 + p2(U—Q)

Canonical equations
oH  dx

o oH o dpi
op; - dt

and x  dt

Give the constraintg, = x; andx, = —g+ u and
oH

oH .

Solutionp; = ¢; andp,; = —cit + Co.
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PMP Example: Lunar lander

Now we have to chooseto maximizeH
W |u| is bounded byfax/M

Ignore the terms i that are constant WRT twand we have to
maximize—|u| + pau.
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PMP Example: Lunar lander

Maximize f (u) = —|u| 4 pou, with |u| <1
B three possible locations for a maximum
m |eft or right boundary, ou=20

B The three values (in order from left to right) are
fluy=—-1—p2, 0, —1+p>

B Threecasep, < —1,—-1<p<lorp,>1

B maximum occurs at

(41, ifp>1

u=<¢ 0, If —1l<py<l

-1, ifp<-1

\

m If bounds argu| < fax/M, then the solution scales.
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PMP Example: Lunar lander

Call p, a switching function, and note that we have
P2=—Cit+C

B during the final descent, < 0
B we must be going down just before we land

B butx,(t;) = 0, sox, > 0 neart;
B we must be decelerating, so that we stof at
B hence we must have positive thrust
m optimal thrust must be at max, elg= fnax/M

B so the equations for motion during final descent are

).(2 — _g+fmax/|v|:k>0
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PMP Example: Lunar lander

Given final conditions the solution near landing is

X1 = %k(t —tl)z and Xo = k(t —t]_)

B notek > 0 in final stages of landing
B noteu = fhax/M in final stages of landing
B givenp, = —Cit + ¢, we must have; < 0

B hence prior stages of control include
B a stage when = 0 (free fall)
B a stage when = — f,5x/M (accelerating down)

B in each stage we get an equation as above, but with different
constank, for u= 0 andu = — f,5,x/M the constank < 0
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PMP Example: Lunar lander

50

40 ) start point

free fall

10 deceleration

-0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

X, = velocity
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PMP Example: Lunar lander

Solution:

m if start above, or on the critical curve

| if travelling upwards, max thrust down to cancel upwards
velocity

m then free-fall, until on the critical curve

X1 = %k(t —t1>2 and Xo = k(t —t1>

B max thrust up until stop on the surface

m if lie below the critical curve
B you crash
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Remember: this is rocket science!
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PMP Example: Lunar lander

® \What's the point of this example
m previously, we couldn’t easily deal with and objective like
B the function isn’t “smooth”
B PMP can work for such examples

B it doesn’t require smoothness, you just need to be able tafind
maximum
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