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Bang-Bang controllers and
other related Issues

Here we consider more generally what conditions result iaragkbang
controller.
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Bang-Bang controllers

A linear optimal control problem is one in which tkentrol variables u
enter the Hamiltonian linearly, e.g.

H = y(x,p,t) +a(x,p,t) u(t)
Examples:
H a time minimization problem, with linear state equation

X = AX + Bu

B the optimal economic growth model with(c) = ¢, so the
functional is T
F{cl = / c(t)e "o
0

subject tok = f (k) — Ak — c leads to the Hamiltonian
H = (e~ p)c+ p(f(K) —AK
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Bang-Bang controllers

In general (for a linear problem) there will be no extremdkess the
control is bounded, e.gn < u; < M;, but wherem; andM; are constant,
we can re-scale the problem to consider bounded cortigls 1, by

takin
J U — My

Mj —m
When the PMP is applied to this type of problem the optimakicamns

ui(t):{ 1, ifo; >0

U =2 -1

—1 if0'i<0

Whereg; # 0 is abang-bangcontroller (otherwise it is singular), amml
IS aswitching function
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Explanation

Consider a linear problem with one contrplthen
H=y(x,p,t)+a(x,p,t)u

B The PMP requires us to maximitefor all u.

B The derivative oH WRT touis a(x,p,t).

m If o(x,p,t) # 0 the derivative is never zero.

B Hence the maximum will occur at the boundsuof

| If o(x,p,t) > 0, the maximum will occur for the positive bound of
u, whereas ifo(x, p,t) < 0 the maximum will occur for the negative
bound.

B Henceo is a switching function.
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Example: optimal fish harvesting

m fish stock (population(t))
M grows at a fixed ratg, so without harvesting
X =YX
B harvesting at rata reduces the population
X=YyX—U
B we wish to harvest the maximum number of fish in tilne

B discount by rate for future harvests
B maximize

.
F{u}:/ ue "dt
0
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Example: optimal fish harvesting

Problem formulationMaximize

.
F{u} = / ue "dt
0
subject to _
X=YyXx—u
andx(0) =1, andx(T) free.

Equivalent problemMinimize
T
F{u}:/ —ue " dt
0
subject to

X=yX—U
andx(0) =1, andx(T) free.
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Example: optimal fish harvesting

The Hamiltonian is t
H=ue "+ p(yx—u)

which is linear in the control variable.
Hamilton’s equations (the canonical, or co-state equajiare

a_H—d_X and a_H—_d_p
op dt ox  dt

The first of Hamilton’s equations just gives back the growgbation
X = yx— U, the second gives

which has solutiop = c,e™.
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Example: optimal fish harvesting

The Hamiltonian is

H = ue "+ p(yx—u)
= pyx+ e —p|u

which is linear in the control variable. The control must loeibded, and
will be bang-bang with switching function

o=e—p=e"—ce"

ForO<u<lwegetu=0orl.

U(t):{ 1, If g; >0

0, If 0 <O
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Example: optimal fish harvesting

Given fixed end-timd, but freex(T ), then the natural boundary
condition isp(T) =0, soc; = 0, and

o=et—ceM=e">0

W result is fishing at maximum rate

| if the fishing rateu is greater than the growth raye then the fish
stock will eventually die out.

This model may be a big simplification (ignores economicdestike
cost of fishing, or demand), but it does show some intere&iaires.

B control is needed, or you get over-fishing!
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Time Minimization Problem

Time minimization, the functional to minimize is

ty
T{x,u} =/ 1ld

to

Given that the starting statexsty) = Xp, and the desired end state is
X(t1) = X1, but thatt; is not fixed, and is subject to some DE

X = g(x,u,t)
To get a linear autonomous problem, we need that

X = AX + Bu
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Time Minimization Problem

Linear autonomous time minimization, the functional to mrmize is

ty
T{x,u} =/ 1ld

to

subject to _
X =Ax+Bu

whereA is an x n constant matrix, an8 is an x mconstant matrix. The
controller is assumed to be bounded, e.qg.

| <1, fori=1,.....m
The Hamiltonian and generalized momentum will be
H=—-1+p'Ax+p'Bu and p=-Hy=-Ap

which is linear in the controllau.
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Time Minimization Problem

We know the control will governed by trevitching function

o=p'B
so we get the control
( 1, If pri >0
Ui(t): ¢ —1 If pri <0
_unknown  ifp'b; =0

where theb; are them columns of the matriB. Givenp = —A"p, so

p = e A (=), it is unlikely thatp™ b; = 0, so singular control is ruled
out, and the control is bang-bang.
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Time Minimization Problem

In general a control may or may not exist!

B existence:lf Ais a stable matrix (i.e., all the eigenvaluesfdfiave
non-positive real parts), then for any poxgt there exists an
optimal control which will go fronxg to the origin.

This is useful because we can rewrite the problem so thatdbieadl
end-pointx(t;) = 0.
B uniqueness:If an optimal control exists, it is unigue.

B switching: If the eigenvalues of the x n matrix A are all real, then
there exists a unique control control, where eack +1 is
piecewise constant and has no more thanl switchings.
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Time Minimization Problem

Example: parking problem (from Lecture 19)

Rewrite the problem so the poiBtis at the origin x(t;) = 0), and the
controlu = Force/mass is bounded hy < 1. The differential equation

X = U

can be written as two first order DESs by definig= x andx, = X, so that

(2)=(50)(%)(9):
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Time Minimization Problem

The matrixA has eigenvalues = 0,0, and so satisfies the existence and
uniqueness conditions. The Hamiltonian is

H=—-1+piX+pau
So the switching function ig,. Hamilton’s equations (PMP) results in

: oH
P = _0_)(1 =0
oH
P, = _a_Xz = —P1
with solution €; andc, are constants of integration)
Pr = C
P2 = —CGl+C
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Time Minimization Problem

The switching functiom, = —cit + ¢, is guaranteed to change sign at
mostn— 1 = 1 times, so the possible solutions are

u = 1lforallte][0,T]

u = —1forallte[0,T]

L <’ —1forallt € [0,ts)
| Lforallt e (ts,T]

L <’ 1 for allt € [0,ts)
| —1forallt € (t,T]

\
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Time Minimization Problem

Solving the DE fou= +1

Xo = =t+cC3
1 2
X1 = Zliét +C3t +C4

Time can be eliminated from the above by squaring the firshgo and
multiplying by 1/2,

1 2 12 1 2

—X5 = —t“tcit+—-C

272 2 st 3G
12

X1 = :|:§t +C3t +Cy
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Time Minimization Problem

Foru=+1
1 1 1
QX% — Etzj:CQ,t —|— éC%
1 2
X1 = :|:§t +C3t +Cy

SO we can write; as a function ok»

(1
Xx5+cs foru=1
e —ix2+c foru=—1
| 2727 B

wherecs = ¢4 — 3¢5 andcg = ¢4+ 3¢5
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Phase diagram 1

Phase diagram
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X, (position)
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Phase diagram 2

Phase diagram

X, (position)
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Time Minimization Problem

Parking problem: moving from point A (at= —2) to B (atx = 0) and be
stationary at both start and stop times. Given

Xy = position
Xo = velocity

the end-point conditions are
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Time Minimization Problem

Phase diagram

X, (velocity)

X, (position)
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Time Minimization Problem

So the solution is case (4)

e 1 for allt € [0, 1)
| —1forallt € (ts, T]

Hence we know that the initial trajectory will be

Xo = 1+¢C3
1.,
X1 = Et +C3t +C4

with x;(0) = —2 andx,(0) = 0, socz = 0 andc, = —2, with result (for
t <ty

Xo = 1
1
X]_ — §t2 — 2
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Time Minimization Problem

So the solution is case (4)

e 1 for allt € [0, 1)
| —1forallt € (ts, T]

Hence we know that the final trajectory will be

Xo = —1+4 Cé
1 2 / /
X]_ — - ét —I— C3t ‘I— C4

with x;(T) = 0 andx,(T) = 0, soc, = T andc, = —T?2/2, with result that
forts <t <T
Xo = T —t

X1 = —
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Time Minimization Problem

At time ts the two paths must join, so we get the conditions

”m_X]_(t) = X]_(t)
t—ts t—ts
|im_X2(t) = |im Xz(t)
t—ts t—ts

When we substitute the initial and final paths, we get

}t2_2 _ _(T _ts)z
2° 2

ts — T _tS

The second equation requires that T /2, which we can observe
directly from the symmetry of the phase diagram.
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Time Minimization Problem

The continuity conditions are

1

(T —ts)?
2
ts — T _ts

Givents = T /2 the first equation becomes

1 T2
i
8 8

which we rearrange to get
T°=8

From the problem formulatio > 0, and so we take

T=2V2 and ts=+?2
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Time Minimization Problem

Solution relative to time
2

=== CONtrol
- yvelocity
position

[ T T O B o 5 S B B ]

0 0.5 1 1.5 2 2.5
time

Variational Methods & Optimal Control: lecture 27 — p.29/



Singular control

Linear problem,

H = W(x,p,t) +0o(x,p,t)"u(t)
Optimal control is

2

1, if ;>0
ut)=¢ -1 if 0 <O
\ unknown Ifo; =0

Whenao(x,p,t) = 0 the controlu has no effect o
B the PMP fails: we have no information about the optimal aaintr

B called singular, degenerate, irregular, or ambiguousrobnt
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Singular control

If o(x,p,t) =0 only for isolated points there there is no problem. If
o(x,p,t) = 0 over an interval, then within the interval

a(x,p,t)=o(x,p,t)=...=0

then singular control must be used.

B similar in nature to the CoV case where the functional isdimay/,
and so we have degenerate solutiofsee earlier lectures).
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Singular control

Linear-autonomous time-minimization problem, where

H = W(x,p) +a(x,p)u(t)
wherea(x,p) = 0 over some interval.
B autonomous problems impliés = congt
m free-end time impliegl =0 for allt € [0, T|
B Soy(x,p) =0 over the same interval agx,p) = 0.
B Similarly for thekth order derivatives ap ando

B Using the chain rule

5(x,p) = 225+ 228 = Lt (x,u) + 2
P)=9x* " apP T ox

we may be able to solve far (if not, increase)

o.
app 0
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Singular control example

Minimize LT
F = 5/0 X7 o
subject to
X, = X+uU
X, = —u

where|u| <1 andT is unspecified.

The Hamiltonian is

1 1
H= —§x§+ P1(X2+U) — poU = —QXer P1X2 + (P1— P2)u

which is linear inu, with switching functiono = p; — po.
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Singular control example

Hamilton’s equations
oH :dxi and O_HZ_%
api dt 0>q dt
Give the state equations and
oH
0x1
oH :
% = P1=—pP
The solution involves three cases
1. If the switching functioro = p; — po > 0thenu=1
2. If the switching functioro = p; — p» < O thenu= -1

3. If the switching functioro = p; — p, = 0 then we have singular
control
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Singular control example

Caselo=p;—po>0andu=1, so

).(1 = Xo—+ 1
which has solutions
1 2
X1 = _ét +(Cc+1t+c
Xo = —t14C
SO we can write 1
X| = —éxg—x2+c4

wherecy = ¢i(c; +1) +cp —¢%/2
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Singular control example

Case20=p;— p2<0andu= -1, so

).(1 = X —1
which has solutions
1 2

i = S +(c1—t+c

Xo = t4+C
SO we can write

1 2
mzég—m+%

wherecz = —cy(c; — 1) + ¢ +¢5/2
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Singular control example

Case 3: singularas=p; —p, =0

O = P1—pP2

6 — bl_bz
= X1+ P21
= 0

Using this, and the fact tha, — p, = 0 in the Hamiltonian
H = —2xf 4+ piXo + (p1 — P2)u, we get
1 2

1
H — —EX%‘F p]_X2+ (p]__ pz)u — —EX]_—X]_XZ

For autonomous problems, with free end tirhe= 0, so

X1(X2 —|—X1/2) =0
and hence, eitheq =0 0rx; +2x, =0
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Singular control example

The two solutions present two surfaces:

S : X1 =0
S: X1+ 2% =0

B on S, the derivativex, = 0, and the state equationXs= x, + U, SO
U= —Xo.

B on S, the derivativex, = —x, /2, and the state equations
).(1 = Xo—+U

lead tou = x»
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Singular control example

Phase diagram




Singular control example

Phase diagram
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