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Feedback control systems

» control problem until now have been planned.
> know the problem before hand
> assume state is perfectly observable
> plan the control from the start

» alternative: feedback control
> observe the state at tinhe
> make decisions on the best control at time
> continually update this decision
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Feedback control systems

In all of our previous examples, we solve optimization pevbl‘all at
once”, i.e., we plan the shape of the cupi® optimize the functional.
However, sometimes, we need a control that reacts contshytu
perturbations in a system. Such controllers typicallyizgifeedback.
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Feedback control example

Liquid level control system

» Tank of uniform cross-sectional
Fluid pumped in at rate(t)

Flow outk,/x

Given constant flow, then
steady-state will bes = (Q/k)?

>
» Fluid levelx(t)
>
>

» when there are fluctuations, we wish to bring the tank bac
state, by addition of suitable input at rag).
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Feedback control example

Liquid level optimal control problem
» we wish to operate near steady state, so part of cost is tla@esqu

deviation T
/ X(t) — xJ2dt
0

» Also want to minimize control expenditure, e.g.

/OT q(t)?dt

» Problem is to minimize a linear combination of these two, e.g

[ [x0) - + a’ae)?) a
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Feedback control example

So the optimal control problem can be written as minimize

F{y} = / )2 +a’q(t)?] o

subject toy = —Ay+q(t), andy(0) = x(0) — xs andy(T) = 0.

Substituteg(t) = Ay+ Yy into the integral and we get
Fly} = / 2o’ (Ay+y)?] d

so the E-L equations are

dof of  ,d

dtay dy T [y+Ay] —2y—2a? [Ay+A%y] =0
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Feedback control example

The dynamics of the system are
X=Q+q—kyX
We can linearize the problem as follows:

» nhote we wish to maintair nearxs.
» can approximat& nearxs by a Taylor series

VX=Xt = (x—xs)+0((X—XS)2)

\/_

» the steady state will be when= 0, soQ = k,/Xs

» change variables tp= X — s, SO givenA = K/2, /Xs
y=—Ay+q(t)
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Feedback control example

2a%[y+Ay] 2y—20? [Ay+A%Y] = 0

d .
aa[erAy] y—o?[Ay+A%Y] = 0

0’ [V +AY-AY—A%Y] -y = 0
.. [1+02A2
y_ az

This has solution
y(t) = CeM +Be™

where\ =/ LEA,
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Feedback control example

The solution is

y(t) =Ce' +Be ™
Given the end-point constraint thgi0) = yo, we get conditions
C+ B =Yy, so the solution is in the form

y(t) =yo (aeN +(1- a)ef“)

Take the case wheike — o, and we wisty(T) = 0, i.e. the fluctuation
should go to zero in the far future, then, we require 0, and the solution

will be N
y(t) = yo&

whereA = |/ LG4 We getq(t) from q(t) = Ay+y which gives
q(t) = (A=N)yoe ™ = (A= N)y(t)
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Feedback control example

Given a proportional controller, it is easy to rewrite thedgnic equation

y=—-Ay+q(t)
usingq(y) = My as
y+(A-=M)y=0
which has solution
y(t) = yoe~ AN

We wish to choos®&/ so that it minimizes

F{y} = / )?+a’q(t)?] o

Variational Methods & Optimal Control: lecture 28 — p.11/15

Feedback control example

» the above gives the optimal control poliggt) over the whole
interval [0, T]
» actually, a feedback control problem would be more convénie
> given the statg(t), what should the control be
> write the control as a function of e.g.q(y)

» example:proportional control

q(y) = My

whereM is called thegain
> we choose proportional control because in previous planned
solutiong(t) = (A— A)yoe ™ which is proportional to the
perturbatiory(t)
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Feedback control example

;

Fyb = [ b+afan? a
- /OT[y(t)2+a2M2y(t)2]d
= (1+a2M2)/OTy(t)2d

.
2 / o 2A-M)t 4
0

)
(1+02M?) 1 aamn]T
—2(A—M) C M)}o

= Yo(1+0a°M

= Yo
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Feedback control example

Take the cas& — o and we get
(1+a?M?)

F{y} = Wm

In order to find a maximum we differentiate WRT, to get
d a?2M2(A—M) +2 (14 a*M?)
am" W= Yo 4A—M)2
20°M(A—M) + (1+ a2M?)
2(A—M)?

= Yo

To get a minimum, the numerator must be zero, so we set

20°M(A—M) + (1+0°M?) =0
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Feedback control example

» M < 0, which makes sense, because the control has to reverse
fluctuations.

» Compare the feedback and planned solutions
at) = (A-A)ye™

at) = My(t) = (A— A2+ 1/a?) yoe A

whereA = /%A “and notice they are the same.

» fora large, e.g. high control cost, the solution hz;tsﬁ% 0, and so
M — 0.

» for a small, e.g. low control cost, the fluctuation cost dominates
andM — —1/a
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Feedback control example

20°M(A—M) + (1+0a*M?) =
—0’M2 4+ 20°AM +1 =
M2—2AM —-1/a®> = 0

This is just a quadratic equation vk, which we solve to get

2AL \/4AZ + 402
M = 5 /LN AZ11/02

. . s, (1+a2m?) -
If we take the solution with the '+’ sign, theR{y} = Yooy will be

negative (the denominator is negative), so we are rediricte

M=A—/A?+1/a?
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