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E-L solutions

» the E-L equations are a necessary condition
» the E-L equations are not sufficient

C I ass |f| Catl on Of eXtre ma » along the extremal curve, the functional might have

> amin, max, or stationary point
We have so far typically ignored the issue of classificatibextrema, but > it might be global or local
remember that for simple stationary points we need to lodkgiter
derivatives to see if a stationary point is a maximum, mimmar point of
inflection. We need an analogous process for extremal casegll.

» we really need to classify extremals
> until now we have
* justassumed it was the minima
* used physical insight to understand the solution
* tested it by inspection

> we could also compare to alternative curves
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Examples

» Physical intuition: Brachystochrone (or geodesic): we look for a
minimum time path. So we can see tpéatysically there can't be a
maximum.

» Examine the solution: e.g. consider the functional

Fiy) = [ y2ox
conditioned ory(0) =y(1) = 0.

The E-L equations give straight line solutions, &.g- c1x+ C,, and
the boundary conditions implgs = ¢, = 0, soy = 0. Clearly then
F{y} = 0, which is the minimum possible value, for an integral of a
non-negative function likg’.
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Examples

Fory = 2x— 2x?, we havey
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— 3X, so the function is

Fly) = /01[x<g_gx)+<g_g)2]m
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Examples

» Compare with alternative curves: For the functional

1
Fivh= [ 0y +y?) o
conditioned ory(0) = 0 andy(1) = 1.
The E-L equations give
1 2
y=— X toax+e

and the boundary conditions gieg=5/4, ¢, = 0, so the solution is

—5x 1x2
Y=2"1
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Examples

For the curve/(x) = x, they = 1, so the functional is

F{y}

3 71
Now 5 > 28

/Ol(x+l)dx

[x2/2+x}(1)
3/2

— y=X
— y=5%/4 - X2l4

0 0.2 0.4 0.6 0.8 1

so we should be looking at a local min.

But this isn't very formal, or rigorous!
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Classification of extrema

» Above methods either
> Aren’t very formal or rigorous
> Aren’t easy to generalize
» Need to develop a means of formal classification

» The secret is by analogy to classification for functions otsal
variables

> We need to look at second derivatives
> Positive definiteness of the Hessian

» The analogy to second derivatives is calledgbeond variation
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Maxima of N variables

If a smooth functionf (x) has a local extrema atthenf (x) = 0, and so
we can rewrite Taylor’'s theorem for smah as

f(x+8%) — f(x) = & H(x)dx/2

A sufficient condition for the extremato be a local minimum is for the
quadratic form

n n aZf
OX1, ..., 0%y) = OX H (X)X =
Q(dx1 Xn) (x) i;,;axiaxj

6Xi OX j

to be strictly positive definite.
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Classification of extrema

Classification of extrema of functions (see Lecture 2)

Use Taylor’s theorem in N-D
f(x+8x) = f(x) -+ Of (x) + %BXT H (x)8x + O(8x%)

WhereH (x) is the Hessian matrix

6x§ 0%, 0% 0%10%n
9% f 8 9% f

O%20% 2 T O%0x

H (X) _ 20X1 x5 20%n
0X,0X1  0%Xn0X2 [
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Quadratic forms

A quadratic form
Q(x) =y ajxixj = X' AX
I7J

is said to be positive definite @(x) > 0 for all x # 0.

A quadratic form is positive definite iff every eigenvaluefois greater
than zero.

A quadratic form is positive definite if all the principal nairs in the
top-left corner ofA are positive, in other words
d;n a2 a3

ail a2
>0, | @y axp ag|>0:---

a;1 >0,

ay1 a2
dz1 dz2 ass
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Notes on maxima and minima

maxima off (x) are minima of— f (x).
we need to generalize this to functionals
we do this using the second variation

vvyyvyy

note that even so, we only classify local min and max, theajlob
min or max may occur at the boundary, or at one of severalmere
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The second variation

Given the perturbatiog = y+ €n we use Taylor's Theorem as when
deriving the first variation, but this time we expand B?) terms as
well, e.g.

N of af

,021 2t 021 .
+2 [n 3y T2 5y TN ay2}+0(s)

F{y} -F{y} = €F(n,y
g2 [ ,02f o2, 0%f
n

2 ) M a7 T2 ey TN 5y

] dx+0(e3)
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The second variation

Once again consider the fixed end-point problem, with sneatiysbations
about the extremal curve.

A
y=y+en

(Xl,y])
y=y(X)

(X0:Y0)

= ¥

Variational Methods & Optimal Control: lecture 29 — p.14/28

The second variation

F{y} —F{y} = edF(ny)
82 x / /
+5 [ ¥ty 200ty 0ty ] dx O(E)
82
= edF(n,y)+58F(n,y)+O()
Where we define th8econd Variationby
X1
FF(n.y) :/XO N2ty -+ 200" fyy + 121,y ] dx

Note for a stationary curve, we requidse = 0, so the behavior of
F{y} — F{y} is captured ir°F (n,y).
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The second variation

Note that
d
I_ ¥ (2
ann' = (%)
So we can write

X1 X1 2
/Znn’fwdx - / SURFIRY
Xo

% dX
_ 2¢ [0 odfyy
= [n?ty]2 /XO” - o
o df
_ 24y
N /XO N ax o

using integration by parts and the fact thék,) = n(x;) = 0.
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Classifying extrema

For an extremal curveto be a local minima, we require

8°F(n,y) >0

for all valid perturbation curves. Likewise we get a maxima if

&F(n,y) < 0 for alln and a stationary curve if the second variation
changes sign.

» Note that we have already solved the E-L equations, and so we
knowy. Hence we can calculafl, fyy, andfy,, explicitly.

» we still need to ensur@F (n,y) > 0 for all possiblen.
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The second variation

So we can write the second variation as

X1 d ,
5°F(n.y) :/xo n? <fyy— d—xfw> + N fyy ok

This form has the advantage that
» N2>0
» N2>0
» after solving E-L equations we knotvand its derivatives
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Legendre condition

ThelLegendre conditionis anecessarycondition for a local minima.

If yis a local minima of a functiondt {y} = [ f(x,y,y) dx, then

fyy(X,y,Y) >0

along the extremal curve
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Legendre condition

Sketch proof: Remember that andy are known functions (now), so we

know fy, f, andfyy, explicitly as functions ok, and hence we can write
the second variation

X1
SF(n.y) = [ nPB(X)+ A d
Xo
where
AX) = fyy
d
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Mollifier
15 10°
(i) 1
n(x) = if xe (c—y,c+Y)
0.5
07 ot
0
-05
| — derivative
% 0.2 0.4 0.6 0.8 1
) =4 <v22—y<(>)<(:§>)2)2 eXp(— yz_&_c)z) , ifxe(c—y,cty)
0, otherwise

Ratio of derivative to function is larger for smalhgr
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Legendre condition

Sketch proof: The proof relies on the fact that we can find functions
such thatn| is small, butln’| is large.

Note we cannot do the opposite, becappesmall, implies that) is
smooth, which given the end conditions implies tfrtwill be small.

Example:mollifier

() = exp(—m), if xe[c—y,c+Y]
0, otherwise
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Legendre condition

Sketch proof: Given|n| small, we can essentially ignore théterms,
and we get only the term

X1

SF(n.y) = [ n?AK) o

Xo

If A changes sign, then we could choost be a mollifier such that it is
localized in the part wherA is positive, and a mollifier such that it is
localized in the part oA which is negative. The two would produce
integrals with different signs, and so we would get a charigegm of
&?F(n,y), which is what we are trying to avoid.

Variational Methods & Optimal Control: lecture 29 — p.24/28




Example

Find the minimum of
Fiv = [0 +y?) o

conditioned ory(0) = 0 andy(1) = 1.

The solution is

Sufficient conditions

» various approaches to sufficient conditions
» problem is that we have to get away from point-wise condgion

> like the Legendre condition

> point-wise conditions couldn’t classify which of two pdsi&i
arcs of a great circle is the shortest path between two pomts
a sphere.

5 1, » a sufficient condition is the Jacobi condition, but thereaitreers
y= ZX_ ZX (van Brunt, 10.4, or Cragg’s p.37, or Bliss, p.37)
Then (from earlier) » still mostly only conditions for local minima, so need to doma
work
fooyy) = x/+y?
25 1x2
16 4
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Example All is not lost

fxyy) = x/+y?

fyf = X+2y’
fyy = 2
> 0

Hence Legendre’s condition is satisfied, so tlasld be a local minimum.
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Example: Find the minimum of

Fivi= [ 0/ +y7)

So
fyy = 2
fy = 0
fy = 0

So the second variation

X1 d , X1 ,
52F<r1,y):/ ﬂ2<fw—&fw>+n2fwd><:2/X0 n2dx >0

Xo

for all n so we have a local minimum!
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