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Tutorial 5 Solutions

1. Capillaries: Imagine a slender, open-end cylinder dipped into a largemizth. It
is well known that the cylinder acts as a capillary tube, drewater will rise up the
tube, and moreover that the shape of the surface of the wesdieleithe tube will have
a curved form, as shown in the figure.

zA

For convenience, we can assume the water level without ajegiotand hence ato

is z = 0, and that the cylinder's center of rotation is thexis. Given the radial
symmetry of the problem, we will consider it in cylindrica-ordinategr, 6, z), and
the cylinder will have radiugk. We will describe the height of water in the cylinder
by z(r), and we denote, = 2(0) andz, = z(R), but note that these are not fixed
boundary conditions (the end-points are free).

At equilibrium, the potential energy of this system will bénimized. The potential
energy is made up of the following components:

e The gravitational potential:

R z R 22
G{z} :27rApg/0 r/o sdsdr,:ZﬂApg/U Ly dr,

where/y is the difference between the density of the liquid and aid qis the
gravitational constant.

e The surface energy in the interfaces between the liquid ahd &he cylinder
walls), the gas and solid, and the air and liquid, given by

R
S{z} = AyAA(QsL) +70eDA(Qe) = QWRA”/Z/#QM’LG/ V14 2% —rdr,
0

where

— The constant parameteysg, 75z, and~y g are the respective parameters de-
termining the strength of affiliation or attraction betwekese three compo-
nents. We can think of a parameteas the tension on the surface with units
corresponding to force along a line of unit length. We take= ~vs;, —vsc-
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- Qs Qg1 andQ); ¢ are the surfaces between the respective phases.

— A(-) denotes the surface ared4(-) represents the surface area deformation
from the case without the cylinder, for instance, the undeém surfacé€; .
would have area given by a circular disk (radigisarear R? = 27 fOH rdr),
and the undeformed surfatg s would correspond to the liquid in the cylin-
der at the same height as the water bath.

so the integrals above are trying to minimize the energyltiaguirom tension
in the surfaces due to their deformation from the case witlwicylinder. The
first integral is the energy in the gas-liquid surface, aredgcond is the energy
resulting in the liquid-solid surface minus the energy fribva solid-gas interface
it replaces.

Use calculus of variations to determine the height and sbaibhe water surface inside
the cylinder.

Solution: The problem is traditionally solved using the Young-Laglamuation,
which we shall derive here using calculus of variations.

Ignoring factors oRx the functional we wish to minimize is

R

F{z} = ®(z,) + | f(r,z,2")dr,

where
(I:‘(Zh) = RA’y?’h
flr2,2) = APW*Jr rLc,( V1+Z’2*7”)
The Euler-Lagrange equations are
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whereR; and R, are the two radii of curvature of the surface, ak#l is the pressure
difference. This is conventionally called the Young-Laggaquation.

The cylinder or tube is slender, so we assufnis small, and then the solution to this
equation is given by a segment of a sphere, i.e.,

(z—z)?+r?=c
where the sphere has radiysso

z=z, —\/c:—12

SO

, T

2 _ 2
Ve —r

z r 1
V1+ 27 N \/1+C%rjr2
r

CT
d Z B
drvi+22 o

Note that both radii of curvature argas expected for a spherical section radjusSo
the Euler-Lagrange equations reduce to

2y
LG _ AP [zh — /- 7'2} .

Cr
Note that giver, we can findz, = z(0), by takingr = 0 and thence

_ 2
= APe. (1)

20

To gete, we turn to the end-point equations. The end-peiris free so we get natural
boundary conditions at this point

of
07 =0
~ lr=0
Yrar?' -0
\% 1 + Z/Q r=0

which is automatically true.
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WALL

The end-point;, is free so we get natural boundary conditions at this poicititing
the terminal cos®(z;,), of the form

of _ _o®
07 |,_g 0z
YaRY
iz -
Yra?'
_ILGE Ay
V1+ 22 !
PVLGCOS(Q) = 7A-\/7

whered is the angle of contact to the boundary (see figure). This titerts usually
arrived at through force balancing arguments, and is oftdlea the Young-Dupre
formula.

From this we can derive the radius of the spherical sectiatfthims the surface in the
capillary by noting that

cos(f) = —
Cr
so that
. _eh
T A"/ .
where this only makes sense as long,as- R. Substituting this into (1) we get

o = 27y1c cos(6)

2 eosV) _ 28y

APR  APR’
which is again a well-known formula, sometimes known as timénJrule or Jurin
height after James Jurin (1718).

(&)
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For a glass tube in water, the terms 2. Inequality constraints and broken extremals: solve the isoperimetric problem in-
side a square region, i.e., what is the shape that contaénsuiest area without ex-

e = 0.0728 Jint at 20 C, ceeding a given perimeter, given that the shape must bentontained in a square.

Ay = Y51 —Ysae A . . . . .
- i 3 We will simplify the problem in a few ways. Firstly, the refte@ symmetries of the
=~z cos(d), where for water/glass the contact anglis 20, problem suggest that we could consider one eight of the sqether than the whole
= —0.06841J/n7 at 20 C, square (see figure).

Pwater — 1000 kg/mg-,
par =~ 1.225 kg/m® at sea level at 15C, n
g = 9.8m/g,

AP = Apg
= (pair - ﬁwater)g
~ —9,788 J/nt.

NB: The unit.J stands for a Joule, which is unit of work, abd = 1kg - m?/s>.
=>(

Given these constants, we can approximate the height of #éterwolumn given by

(2) by 139
~ = mm, 3
20 R , (3
and the radius of curvature of the surface will be
¢ >~ 1.06 x R mm, 4)
whereR is measured in millimeters. So for a 2mm wide (1mm radiusg tifse water
would rise 14 mm, and the radius of curvature would be 1.06 mm. So the inequality constraints on the problem become:
The figure below shows some typical examples y@) < W
: ylz) >
301

where the left end point may move along ti@xis (between the constraints), and the
right end-point is free to move along the boundary: y. We will define the end-point
to be(xl,yl).

25¢

207
The area of the region is easily measured by
157

mm

A{y}:8/” y —xd.
0

The perimeter of the region is

@1
L{y} = 8/ V1+y?de.
Jo

Ignoring the factor of 8 in each term, and including the isapetric constraint into
the problem via a Lagrange multiplier, we obtain an objecfiinction

0 10 20 30 40

T
h Ty} = / Y= I+)‘mdzc.
Jo
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We can further simplify by noting that the problem is unietting foriw > R =

L /27 because a circle of radius = L/2 satisfies the isoperimetric constraint, and
fits inside the square, and by previous work this is clearty nfeximal area region
(though there are actually multiple possible circles thaghnfit). ForW < L/8,
the square can be completely filled while still satisfying fierimeter constraint (its
perimeter is less than that specified), and so the squaléigsthe solution. The
interesting cases fall in between.

Find the shape that maximizes the area without exceedinggtimeter constraint.
Solution: The Euler-Lagrange equations are

dof of d N

Boy i TrgR
This is the same as for Dido’s original problem, and we knosvablutions are cicular

arcs. So the possible solutions to the problem involve tarcarcs, and/or stretches
where the inequality constraints are strict.

Consider the natural boundary conditions:

e Atz = 0 we haver fixed, buty free, so the natural boundary condition is

Pl = of | _ -
=0 (‘)yl om0 /1 +?1,2 o

which, given\ # 0 meansy'|,_, = 0.

at the right hand boundary, the natural boundary conditiorthe RHS is a
transversal condition of the form

dxr dyr _ dﬂ, ‘kﬂ,
(dé‘d&) CH) =g —Hogg =0

where the vecto(%‘, ddig) is a tangent to the curve along which the end-point
must lie, i.e.,y = =z, so (%L, %) — (1,1). So the transversality condition

dg 0 de
reduces to
p— H\Il =0
57]‘ — y'ﬂ — 0
oy’ Yy’ o
AL +y
(7;‘2/) —y-=z)| =0
1 + y/Z
1
Note though, that on the boundanyre= x, so the second term vanishes, and we
get
M+y)
/1 + y/z
£
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soy’ = —1 (as above we exclude the case= 0 as in this case the constraint
doesn't “bite”). Hence, the circular arc meets the bounday right angle.

A solution with zero corners looks like a circular arc, ceateat the origin. We know
this is optimal if the circle has perimetér, and fits entirely inside the square, but as
the perimeter grows, the largest circle to fit inside the sgjueon’t make use of the
full perimeter available, and will therefore no longer bexinzal. We therefore need
to seek a solution with a corner.

Intuitively, the solution looks like

Y,

»

! w X

with a straight segment along the boundary, and then a eireut. The “corner” or
point at which the two solutions join is labelléd*, y*).

At the corner, we can vary, but noty which must be equal t&/, and so the corner
condition becomes

H|. = H|..
SO
7oy . 7oy oot
>\7//2
D W — . (L W
V1t+y? o
,U/Z
7/\ = -7 /1 + y/2
Vi+y? o
-1
-1 I
Vi+ty?| L,
—1/1+y2 =1
-
Ylpr = 0
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wherey’ = 0 on the LHS ofr*, andy = W andz = z* on both LHS and RHS. Notice
that the condition ensures that the curve is both continuand has a continuous
derivative.

The perimeter of such a solution with a circular arc that laasusr = W — z* is
L =8z + 277 = [8 — 2n]a™ + 27 W,

because the 8 circular arcs taken together form a full citpiating the perimeter to
fixed L we get

. L=27rw
To8-2r
which gives a positive value iff), W] given the perimeter lies in the bounds given in
the problem.
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3 Terminal costs and optimal control: We originally posed Newton’s aerodynamic

nose-cone problem for a nose cone pointed upwards (with ftmwd/ards). We could
equally have posed it with the flow from right to left as in thgufie below, where the
shape is described byu), u being the horizontal axis.

In this case, a similar simplification of the problem reduitesfunction of interest to

1 1 ‘ Loy
—F{r}=-r(L)? ———dw
27 {r} 2’( ) +/0 T2

Questions:

e Show that the above function results from a simple transéion of the previous
problem.

e Use natural end-point conditions for a problem with a teah@ost to determine
an equation to find(L).

Solutions: The form of the functional comes from the fact that (simitad before)

r' = —tan#,

and adopting the same scaling as befare: = 1 the drag at a point is proportional to
sin? 4, so the total drag at is proportional td27r sin? 4. Integrating, and noting that
sin? = tan? /(1 + tan?) = r"2/(1 + '), and adding the drag of the flat nose-tip, we
get the functional of interest.

As before, we can set the control variable- 7’ = tan 6, and we obtain a set of DEs
to solve.

However, the problem asked to show that we could obtain oolgigm from the other
using a transformation. Take the original functigfx) and note that the conditions
under which we design the cone (i.e., a non-increasing immocéxcept to the flat tip)
mean that for the curved section the curve is invertable vie can write

z=r(w) =y (w),
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ory(r(w)) =w so
dydr _dydr _
drdw  dedw
SO
1/7,/ — y/

Hence our previous functional, transformed using r(w) is

R -
/ %d.’lf,
Jrg 1+Y
r dx

1 L
ok = /0 T3 (1) dw ™

1 Lo .2
—F{r} = / T dw,
2m 0

1 L
—F = — dw,
2 {r} /0 1472 “

wherer, is the radius of the flat tip, which is(L) in the new co-ordinates. The
resistance of the flat tip is just the areg times2muv = 1, so the total functional is
just

iy}

r r/d

Ry
o VTR Jo 147172

We can equivalently write this using the constraint ' to be

dw

Lppray = b [0 A )
om T, u —2)" A 1+u2 w)(u A w

The end point conditions with a free endiat= L and a terminal cost are

o, 2%

; =0.
f);rk axk

t=t1

In this case’ andu are the dependent variables (equivalent,gfande(r, u) = r?/2,
so the two equations are

of 9o B
awtar|, , ="
of 0o B

o "l T

Note that the second equation is an identity (we could alsatthird equation in\ but

that would also be an identity), so we only need the first.
of L o8| _ 9
oo

LTZZ +A(w)(u — 7-’)} Y

= -A+7|,_, =0.

w=L

or' + or

w=L
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So at the end-point = L, we get the value of the Lagrange multiplieris= r(L).
Alternatively, without including Lagrange multipliers the functional, we get

of 0
g5 g@ _—
or' + or|u_p
a 7,,’,/3
iy, =0
3rr2 (1 + 1) — 2t
((1+'r"2)2 +r . =0
TT'Q(S +72) + (1 +77)? .
(1 + 7'/2)2 w=L
2 4 502 4 1 _ 0
(1+7,/2)2 wel.

So eitherr = 0 or2r™ + 512 +1 = 0.




