
AMP 1: 2018 1

Workshop 2
The aim of workshops is open time to work on, and get help progressing your project. The format
for the workshop is not fixed, but each week I would like you to follow the advice I would give any
research student:

1. read something;

2. do something; and

3. write something.

In the previous weeks we looked at sinusoids. On of the topics touched on was that even though
the sinusoids themselves are deterministic, we can generate functions that look random. But purely
random signals aren’t that interesting. Often we want some structure as well.

A common example is in generating textures. In computer generated images (CGI) we often want to
put realistic textures onto objects, or generate parts of a scene such as clouds which are “noisy”.

On appealing approach to this problem is called 1/f noise (or sometimes “pink” noise1), because the
amplitude (or power) of the signal in the frequency domain (on average) is divided by the frequency.

Please read a little more about pink noise at

• https://en.wikipedia.org/wiki/Pink_noise

• http://mansquito.com/pages/what-is-pink-noise.html

• https://www.bhphotovideo.com/explora/content/pink-noise-and-rhythms-our-brains

We can generate such noise (approximately) by various approaches, but one appealing way in
Matlab is to start by generating a Fourier domain signal, and transforming it back to the time
domain.

Start by generating a completely random Fourier transform, using Gaussian variables, and remem-
bering also to have random phase, i.e., the frequency content is described by complex numbers,
distributed randomly around the unit circle in the complex plane, e.g.,

N = 256; % the number of frequencies to generate

magnitude = randn(1, N/2); % Normal (Gaussian) random numbers

phase = 2*pi*rand(1, N/2); % uniformly random phases

f_half = magnitude .* exp(i*phase); % complex values for frequency components

If we transformed this into the time domain, we would get “white” noise, so called because of the
analogy to white light which is (incorrectly) thought of as equally composed of all visible light
frequencies.

To make pink noise we filter so that the magnitude squared is inversely proportional to frequency:

f_half = f_half ./ sqrt(1:N/2);

Transforming back has two steps: the first is to make sure we have a Hermitian signal, which we do
by pasting a second copy of the conjugate of f_half onto the first, but flipped around (also making
sure we put a 0 into the zero frequency slot. The second step is just to take the inverse Fourier
transform

1See Colours of Noise.

https://en.wikipedia.org/wiki/Pink_noise
http://mansquito.com/pages/what-is-pink-noise.html
https://www.bhphotovideo.com/explora/content/pink-noise-and-rhythms-our-brains
https://en.wikipedia.org/wiki/Colors_of_noise

AMP 1: 2018 2

f_full = [0, f_half, fliplr(conj(f_half))];

x = real(ifft(f_full))

We shouldn’t need to use the real function here, but I like to make sure that the output is real in
case there are any numerical errors.

Then plot the result. You should see something a bit like Figure 1, though it won’t be the same
because it is built using random numbers.

0 50 100 150 200 250 300
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 1: 1/f noise example.

Play around, increasing the value of N to see how it changes. Note that it is random, but not
completely – there seem to be patterns in the randomness. Perhaps the result looks something like
the profile of a mountain range?

Now

1. Build that code into a function, and have a play with it. Look up how to set random
“seeds”, e.g., see au.mathworks.com/help/matlab/examples/controlling-random-number-generation.

html, and au.mathworks.com/help/matlab/math/generate-random-numbers-that-are-repeatable.html

so that you can create repeatable patterns of random numbers.

2. Extend the code to allow 1/fα noise. That is, change the filtering function so that it has a
configurable parameter α as an extra input the function. Experiment with other values of α
between 0.0 and 2.0. The former is “white” noise, and the latter “brown” noise (Brownian
motion). You can explore even further too.

3. Download the code one_on_f_noise2.m from my web page, which will generate a 2D version
of the above. You can plot the results using the surf function, and interactively rotate them
to get the best view.

4. A texture map can do more that this. It generates a noise field, which can be used to alter
other maps to generate textures such as those seen in marble and wood.

You do not have to hand anything up. However, you should not limit your exploration of this topic
to 50 minutes. You should expect (in the long run) that you will need to put in a couple of hours
work (towards your project) for each workshop. But today we are just starting out.

You can also ask questions about your practical, or any other aspects of the course.

au.mathworks.com/help/matlab/examples/controlling-random-number-generation.html
au.mathworks.com/help/matlab/examples/controlling-random-number-generation.html
au.mathworks.com/help/matlab/math/generate-random-numbers-that-are-repeatable.html

