Communications Network Design lecture 05

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 19, 2009

Communications Network Design: lecture 05 - p.1/11

Note that this course assumes that you already know something about optimization. If you don't, you'd better come and talk to me about it so \bot can assing you some extra reading to catch up.

Optimization: 1000 foot view

Its helpful for us to talk a little about optimization techniques before we start. We also present a little notation

Communications Network Design: lecture 05 – p.2/11

Communications Network Design: lecture 05 - p.1/11

Communications Network Design: lecture 05 – p.2/11

Simple example

Cost

Three node network has three acceptible designs:

- ▶ 4 possible network designs
 - ▷ associated costs have been worked out for each
- ▶ easy to choose the second network as the cheapest

 $Communications \ Network \ Design: \ lecture \ 05-p.3/11$

Bigger problems

- ► Node with N nodes
 - \triangleright for small N we can evaluate all designs, and choose the best
- ▶ But $2^{N(N-1)/2}$ possible network designs
 - > some aren't practical
 - but we still have to check that
- \blacktriangleright Even for N=20 we can't evaluate all of these
 - > at least not in the life-time of the Universe

Communications Network Design: lecture 05 – p.4/11

Optimization

Optimization is about building automated methods for finding optima of such problems

- ► needs to work quickly (enough)
 - > planning horizon
 - > management requirements
- ▶ ideally attains provably best solution
 - ▷ can't always do this (in reasonable time)
 - ▷ our problems are often NP-hard

 - > often this isn't a big issue:
 - \star look at all the approximation we already made

Communications Network Design: lecture 05 – p.5/11

High-level view of problems we have

	planning	typical		common
problem	horizon	goal	variables	constraints
network design	months	min. cost	capacities	traffic
traffic		min.		network
engineering	days	congestion	weights	design
routing	seconds	min. delay	routes	weights +
				network

we'll start from back to front (with routing)

Communications Network Design: lecture 05 – p.6/11

Meta-heuristics

High-level view of heuristics

- ► Greedy
- ► Gradient Descent
- ► Branch and Bound
- ► Simulated Annealling
- ► Genetic Algorithms

We will often need to use specific properties of a problem in order to make the above practical.

Communications Network Design: lecture 05 – p.7/11

The above is an incomplete listing: there are many other possible heuristics (e.g. tabu search), but these are the main ones used here.

Where possible we will take advantage of the optimization you already know: for instance linear programming.

Heuristic doesn't mean "bad". There are some, (e.g. Dijkstra is a greedy algorithm) that are actually guaranteed to find the true optimal solution fairly quickly.

Simple Set Notation

```
\begin{array}{lll} \text{membership} & \omega \in U &=& \omega \text{ is in } U \\ & \text{subset} & L \subset U &=& \text{if } \omega \in L \text{, then } \omega \in U \\ & \text{intersection} & L \cap U &=& \{\omega | \omega \in L \text{ and } \omega \in U \} \\ & \text{union} & L \cup U &=& \{\omega | \omega \in L \text{ or } \omega \in U \} \\ & \text{set difference} & L \backslash U &=& \{\omega | \omega \in L \text{ and } \omega \notin U \} \\ & \text{empty set} & \varphi &=& \{\} \\ & \text{for all} & \forall \omega & \text{do something for all } \omega \\ & \text{count} & |U| &=& \text{the number of elements of } U \end{array}
```

Communications Network Design: lecture 05 - p.8/11

Optimization Notation

We can write an optimization problem different ways

▶ (1) write it out in full

$$\begin{array}{cccc} \text{maximize} & \mathbf{c}^T\mathbf{x} \\ \text{subject to} & A\mathbf{x} & \leq & \mathbf{b} \\ & \mathbf{x} & \geq & 0 \end{array}$$

▶ (2) shorter form

$$\max\{\mathbf{c}^T\mathbf{x} \mid A\mathbf{x} \le \mathbf{b}, \mathbf{x} \ge 0\}$$

► (3) even shorter form

$$\underset{A\mathbf{x} < \mathbf{b}, \mathbf{x} > 0}{\operatorname{argmax}} \mathbf{c}^T \mathbf{x}$$

Communications Network Design: lecture 05 – p.9/11

Other Notation

I usually use

- \blacktriangleright lower case for scalars, e.g., x
- ▶ lower-case boldface for (column) vectors, e.g., x
- \blacktriangleright upper-case for matrices, e.g., A

When I write x < b I mean every element of x is less than its corresponding element in b, so

$$x_i < b_i, \ \forall i$$

and similarly for fo relational operators, e.g., \leq , \geq , ...

Communications Network Design: lecture 05 - p.10/11

References