Communications Network Design lecture 05

Matthew Roughan

<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 19, 2009

Optimization: 1000 foot view

Its helpful for us to talk a little about optimization techniques before we start. We also present a little notation.

Simple example

Three node network has three acceptible designs:

- 4 possible network designs
 - associated costs have been worked out for each
- easy to choose the second network as the cheapest

Bigger problems

- Node with N nodes
 - lacktriangleright for small N we can evaluate all designs, and choose the best
- But $2^{N(N-1)/2}$ possible network designs
 - some aren't practical
 - but we still have to check that
- \blacksquare Even for N=20 we can't evaluate all of these
 - at least not in the life-time of the Universe

Optimization

Optimization is about building automated methods for finding optima of such problems

- needs to work quickly (enough)
 - planning horizon
 - management requirements
 - size of the problem
- ideally attains provably best solution
 - can't always do this (in reasonable time)
 - our problems are often NP-hard
 - need heuristic (rule of thumb) methods
 - often this isn't a big issue:
 - look at all the approximation we already made

High-level view of problems we have

	planning	typical		common
problem	horizon	goal	variables	constraints
network design	months	min. cost	capacities	traffic
traffic		min.		network
engineering	days	congestion	weights	design
routing	seconds	min. delay	routes	weights +
				network

we'll start from back to front (with routing)

Meta-heuristics

High-level view of heuristics

- Greedy
- Gradient Descent
- Branch and Bound
- Simulated Annealling
- Genetic Algorithms

We will often need to use specific properties of a problem in order to make the above practical.

Simple Set Notation

```
\begin{array}{lll} \text{membership} & \omega \in U &=& \omega \text{ is in } U \\ & \text{subset} & L \subset U &=& \text{if } \omega \in L \text{, then } \omega \in U \\ & \text{intersection} & L \cap U &=& \{\omega | \omega \in L \text{ and } \omega \in U \} \\ & \text{union} & L \cup U &=& \{\omega | \omega \in L \text{ or } \omega \in U \} \\ & \text{set difference} & L \backslash U &=& \{\omega | \omega \in L \text{ and } \omega \notin U \} \\ & \text{empty set} & \phi &=& \{\} \\ & \text{for all} & \forall \omega & \text{do something for all } \omega \\ & \text{count} & |U| &=& \text{the number of elements of } U \end{array}
```

Optimization Notation

We can write an optimization problem different ways

(1) write it out in full

$$\begin{array}{cccc} \text{maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A\mathbf{x} & \leq & \mathbf{b} \\ & \mathbf{x} & \geq & 0 \end{array}$$

(2) shorter form

$$\max\{\mathbf{c}^T\mathbf{x} \mid A\mathbf{x} \le \mathbf{b}, \mathbf{x} \ge 0\}$$

(3) even shorter form

$$\underset{A\mathbf{x} < \mathbf{b}, \mathbf{x} > 0}{\operatorname{argmax}} \mathbf{c}^T \mathbf{x}$$

Other Notation

I usually use

- \blacksquare lower case for scalars, e.g., x
- lower-case boldface for (column) vectors, e.g., x
- \blacksquare upper-case for matrices, e.g., A

When I write $\mathbf{x} < \mathbf{b}$ I mean every element of \mathbf{x} is less than its corresponding element in \mathbf{b} , so

$$x_i < b_i, \ \forall i$$

and similarly for fo relational operators, e.g., \leq , \geq , ...

References