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Routing

A ommon approah to routing uses shortest-paths. Theanonial algorithm for solving shortest-path routing isDijkstra's.
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Logial vs Physial Network

Possible physial topology (layer 1)
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Logial vs Physial Network

Possible logial network topology (layer 2)
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Logial vs Physial Network

Possible logial network topology (layer 3)
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Mapping the logial to the physial

Network maps (at one layer) an be quite misleading
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Ciruit swithing won't go away

Even for purist IP net-headsoften iruit swithing in lower layersG-MPLS � lambda-swithingWDM allows multiple wavelengths of light toshare a single �beroptial ross-onnets swith the lightno eletronis involvedpurely optialprotools to set up and tear down optial iruitspaket forwarding on top of these iruits
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Routing
We need a method to map paket routes to linksalled a routing protoolseveral types existwe onsider (today)link stateshortest pathIGP (Interior Gateway Protool)routing protools
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Notation and AssumptionsThe underlying struture is a graph, witha set of nodes N = {1,2, . . .n} (also alled vertex)
|N| = na node ould be a router, an AS, a PoP, ...a set of links E ⊆ N×N (also alled edges)
E ⊂ {(i, j) : i, j ∈ N, i 6= j}
|E| ≤ n(n−1)/2a link ould be a physial link, logial iruit, ...assume the links are undireted, so

(i, j) = ( j, i)this just makes desriptions easiereasily generalized to direted graphsThe network is de�ned by the graph, G(N,E)
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Notation and Assumptions

Origin-Destination (O-D) pair (p,q) ∈ N×NLet K be the set of all O-D pairs
K = {[p,q] : p,q∈ N}.Offered traf� between O-D pair (p,q) is tpqThe set of paths in G(N,E) joining an O-D pair (p,q)is denoted Ppq.paths are assumed to be a-ylie.g. no node is visited twiee.g. loop freeThe set of all paths in G(N,E) is denoted P.

P = ∪[p,q]∈KPpq
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Network Paths
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Network Paths
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Notation and Assumptions

Eah link e∈ E has a apaity, denoted by re(≥ 0).In ommuniation networks, this is the maximumservie rate, with units of bits/se (�bit rate�).If links are unapaitated,
re =

{

∞, ∀ e∈ E
0, ∀ e 6∈ E

Links have a physial distane, often measured interms of propagation delays de(≥ 0).Where required, assume de = ∞, ∀e 6∈ E
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Routing
in essene, routing mapsend-to-end traf� from p to q, i.e. tpqto end-to-end paths in Ppqto links in Ethere are very many pathsan't searh them allhave to be lever about hoie of pathsan use multiple pathsload-balaning � spreads load over paths
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Routing
Want to route traf� tpq from node p to qDeision variables are xµ

xµ = traf� alloated to path µ∈ P.Note that xµ ≥ 0 and for all [p,q] ∈ K and
∑

µ∈Ppq

xµ = tpq

Also the xµ are disjointtraf� routed on path µ∈ Ppq omes from only tpq.The vetor x = (xµ : µ∈ P) is alled the routing.
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Routing osts

Any routing indues loads on a linkDenote the load on link e∈ E by fe.In direted networks, load is alled �owlink loads are obtained by summing the traf�alloated to all paths ontaining the link e.
fe = ∑

µ∈P:e∈µ

xµ

The vetor f = ( fe : e∈ E) is alled the load on thenetwork.
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Routing osts

Assume that load indues ostloads ause ongestioninreases delaysan be seen as a type of ostwe may purhase network apaity from a providerthey may harge based on usageas network growswe add apaityif more load on links, we need to add apaitysooner, whih osts us moreThe ost of the network for a given load f is C(f)
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Routing problem

The Routing Problem: Determine the optimal routing xto minimise C(f)Formulation: minimize C(f) s.t.
fe = ∑

µ∈P:e∈µ

xµ, ∀e∈ E

xµ ≥ 0, ∀µ∈ P

∑
µ∈Ppq

xµ = tpq, ∀ [p,q] ∈ K

fe ≤ re, ∀e∈ E
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Routing problem

The Routing Problem: Determine the optimal routing xto minimise C(f)Formulation: minimize C(f) s.t.
fe = ∑

µ∈P:e∈µ

xµ, ∀e∈ E

xµ ≥ 0, ∀µ∈ P

∑
µ∈Ppq

xµ = tpq , ∀ [p,q] ∈ K

fe ≤ re , ∀e∈ E

indued loadsrouting
traf�onservation apaity onstraints

edgespaths
O-D pairs
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Linear ostsRemove apaity onstraintsAssume linear osts, with generi weights αe

C(f) = ∑
e∈E

αe fe, αe ≥ 0, ∀e∈ E

then the ost of using the link is diretlyproportional to the load on the link, i.e.
C( fe) ∝ fe

αe is sometimes alledthe length of the linkthe link weightthe link ost
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Path lengthsThen, in terms of the deision variables,
C(f) = ∑

e∈E

αe fe

= ∑
e∈E

αe

(

∑
µ∈P:e∈µ

xµ

)

= ∑
µ∈P

(

∑
e∈µ

αe

)

xµ

= ∑
µ∈P

lµxµ

lµ = ∑e∈µαe is alled the ost, or length of path µ∈ P.It is the sum of all the link osts along the pathRelationship between link ost, and path lengthlonger paths use more resoures
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Network path-length example
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Two possible paths from 1 -> 2Path 1 (1-2), and has length lµ = 7Path 2 (1-3-2), and has length lµ = 4+4 = 8
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Network path-length example
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3

Shortest path routing
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Network path-length example

7

4 4

1 2

3

Longer path uses two links, and hene more resoures
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Linear osts => shortest path routing

We want to minimize C(f) = ∑
e∈E

αe fe = ∑
µ∈P

lµxµ

�nd minimum length paths l̂pq = min{lµ : µ∈ Ppq}put all traf� tpq on a minimum length paththen we get ost

C(f) = ∑
µ∈P

lµxµ = ∑
[p,q]∈K

l̂pqtpq

problem solved!we just have to �nd shortest pathsDijkstra's algorithmFloyd-Warshall algorithm
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Speial ase

the network is fully meshed (a lique),
E = {(i, j), ∀ i, j ∈ N, i 6= j}the αe satisfy the triangle inequality i.e.

αik ≤ αi j +α jk, ∀ i,k, j ∈ NThen the path of minimum ost between any twonodes p,q is the diret link (p,q).That is, we route all offered traf� tpq diretlyfrom p to q.This network is alled:a fully meshed network (or lique) with diret linkrouting.
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Triangle inequality

ij jk

ik

α α

α
ki

j

αik ≤ αi j +α jk, ∀ i,k, j ∈ N
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Dijkstra's algorithm

most networks are not liquesfast method to �nd shortest paths is Dijkstra'salgorithm [1℄Edsger Dijkstra (1930-2002)Duth omputer sientistTuring prize winner 1972.�Goto Statement Considered Harmful� paper�nd distane of all nodes from one start pointworks by �nding paths in order of shortest �rstlonger paths are built up of shorter paths
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Dijkstra's algorithm

Inputgraph (N,E)link weights αe, de�ne link distanes
di j =











0 if i = j
αe where (i, j) = e∈ E
∞ where (i, j) = e 6∈ E

a start node, WLOG assume it is node 1Outputdistanes D j of eah node j ∈ N from start node 1.a predeessor node for eah node (gives path)
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Dijkstra's algorithm

Let Sbe the set of labelled nodes.Initialise: S= {1},

D1 = 0,

D j = d1 j , ∀ j 6∈ S, i.e. j 6= 1.Step 1: Find the next losest nodeFind i 6∈ Ssuh that Di = min{D j : j 6∈ S}Set S= S∪{i}.If S= N, stopStep 2: Find new distanesFor all j 6∈ S, set
D j = min{D j ,Di +di j}Goto Step 1.
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
changed
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
changed
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Dijkstra Example
0

3

3

6

6

5 4

1

4

52

D=(0,5,3,4,6)

6

S={1,3,4,2,5}

1

Step 1
& stop

1

4

3

42

5

Communications Network Design: lecture 06 – p.36/43



Dijkstra Result
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Dijkstra intuition

build a (Shortest-Path First) SPF treelet it growgrow by adding shortest paths onto itsolution must look like a treeto get paths, we only need to keep trak ofpredeessors, e.g. previous examplenode predeessor1 -2 33 14 36 2
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Dijkstra issues

Dijkstra's algorithm solves single-soureall-destinations problemeasily extended to a direted graphan only join up in the diretion of a linklink-distanes (weights) must be non-negativethere are generalizations to deal with negativeweightsnot often needed for ommuniations networksFor more examples use
http://carbon.cudenver.edu/~hgreenbe/sessions/dijkstra/DijkstraApplet.html
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Dijkstra omplexity

simple implementation omplexity O(|N|2)Ciso's implementation of Dijkstra tested in [2℄

omp.time= 2.53N2−12.5N+1200miroseonds

omplexity (assuming smart data strutures, i.e.Fibonai heap) is
O(|E|+ |N| log|N|),

|E| = number of edges
|N| = number of nodesto ompute paths for all pairs, we an performDijkstra for eah starting point, with omplexity

O(|N||E|+ |N|2 log|N|),
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Dijkstra omplexity

Empirial Ciso 7500 and 12000 (GSR) omputationtimes for Dijkstra [2℄
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Sketh of proof of Dijkstra

Dijkstra's algorithm solves the single-soure shortest-paths problemin networks that have nonnegative weights.Proof: Call the soure node s the root, then we need to show that thepaths from s to eah node x orresponds to a shortest path in thegraph from s to x. Note that this set of paths forms a tree out of asubset of edges of the graph.The proof uses indution. We assume that the subtree formed atsome point along the algorithm has the property (of shortest paths).Clearly the starting point satis�es this assumption, so we need onlyprove that adding a new node x adds a shortest path to that node. Allother paths to x must begin with a path from the urrent subtree(beause these are shortest paths) followed by an edge to a node noton the tree. By onstrution, all suh paths are longer than the onefrom s to x that is produed by Dijkstra.
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