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Communications Network Design: lecture 07 – p.1/44

This leture ontinues the disussion of shortest-path routing. It provides a new algorithm(Floyd-Warshall) and so details of how shortest-path routing is implemented in the Internet.
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Routing (ontinued)

We ontinue the algorithmi viewpoint by onsidering analternative to Dijkstra alled the Floyd-Warshallalgorithm. Also we onsider routing implementation:OSPF, IS-IS, and some misellaneous issues suh as loadbalaning. Finally we will look into the distributedBellman-Ford dynami programming algorithm asimplemented in RIP.
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Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest pathproblem

◮ same input as Dijkstra (exept no start node)

◮ add nodes in one by one, and ompute shortestpaths as you add in a node

⊲ shortest path is either the same

⊲ or hanges to inlude the new node
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Floyd-Warshall

Let D(k)
i j denote the shortest path length from node i tonode j using intermediate nodes from 1 to k only.Initialise: D(0)

i j = di j ∀ i, j ∈ N

V (0) = [0], an |N|× |N| zero matrix.Step: for k = 1,2, . . .n, ompute new distane estimates

D(k)
i j =min{D(k−1)

i j ,D(k−1)
ik +D(k−1)

k j } ∀ i 6= jCompute the predeessor nodesIf D(k)
i j < D(k−1)

i j put V (k)
i j = k;otherwise, V (k)

i j = V (k−1)
i j
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Floyd-Warshall

◮ The initialisation step gives the shortest pathlengths subjet to no intermediate nodes

◮ For a given k, D(k−1)
i j gives the shortest path from ito j using only nodes 1 through k−1 as possibleintermediate nodes.

◮ On allowing node k as an intermediate node, either kIS on the shortest path, or it isn't.

⊲ it isn't: keep the same distane, and path

⋆ D(k)
i j = D(k−1)

i j and V (k)
i j = V (k−1)

i j

⊲ it is: the new path must be made of twoshortest paths, joined by node k, i.e. i−k and k−j

⋆ D(k)
i j = D(k−1)

ik +D(k−1)
k j

⋆ V (k)
i j shows where the join ourred
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Floyd-Warshall

◮ The 0's in V (n) determine the adjaenies (links) inthe �nal network.

⊲ V (n)
i j indiates that we never found a shorterpath than di j along the diret path.

⊲ hene i and j are adjaent in the SPF tree
◮ The other terms in V (n) show the predeessor nodesfor eah end-to-end path.

⊲ onstrut paths, by onatenating predeessornodes
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Floyd-Warshall example
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Floyd-Warshall example

Initially, we put diret links into the matrix D
D(0)

i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (0) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0
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Floyd-Warshall example

k = 1: inlude node 1 on existing diret paths (so anypath already ontaining node 1 e.g. top line and �rstolumn of D, an be ignored). Here, nothing hanges.

D(1)
i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (1) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0
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6

2 5

1

1
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3 5

1
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Floyd-Warshall example

k = 2: try inluding node 2 on existing paths (so any pathalready ontaining node 2 e.g. line 2 and seond olumnof D, an be ignored).

D(2)
i j =

1 2 3 4 5

1 0 6 3 10 7
2 0 2 4 1
3 0 1 3
4 0 5
5 0

V (2) =

1 2 3 4 5

1 0 0 0 2 2
2 0 0 0 0
3 0 0 2
4 0 0
5 0

3

6

4

6

2 5

1

1
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Floyd-Warshall example

k = 3: try inluding node 3 on existing paths (so any pathalready ontaining node 3 e.g. line 3 and third olumn of

D, an be ignored).

D(3)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (3) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1
5

4

1

4

5

2

3

E.G. The old path joining 4-5 was a diret link withdistane D(2)
45 = 5. But when we are allowed to inludenode 3, we get an alternative D(2)

43 +D(2)
35 = 4, whih isbetter, so we set D(3)

45 = 4, and V (3)
45 = 3.
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Floyd-Warshall example

k = 4: try inluding node 4 on existing paths:No hanges.

D(4)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (4) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1

2

3 5

1

4
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Floyd-Warshall example

k = 5: try inluding node 5 on existing paths. The entries

D(5)
i j give the length of the shortest path from eah node

i to eah other node j.

D(5)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (5) =

1 2 3 4 5

1 0 3 0 3 3

2 0 0 3 0

3 0 0 2
4 0 3
5 0Use the boxed zero entries in the �nal V to determinelinks: (1,3), (2,3), (2,5), (3,4).
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Floyd-Warshall shortest paths
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Note that the solution is the same as the one we found with Dijkstra. However, that isn'tguaranteed. In some ases, there may be multiple equal-length shortest paths. The pathyou �nd depends on the ordering of the nodes in the various tehniques, so depending onimplementation, even two different versions of Dijkstra ould return a different SPF tree. Wewill onsider this issue a little more later on.
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Floyd-Warshall omplexity

◮ In alulating D(k)
i j at eah step, we need to omparetwo possibilities for eah of |N|(|N|−1)

2

pairs ofnodes.

◮ the algorithm has |N| steps

◮ total omputational omplexity is O(|N|3).

◮ This of ourse is the same as repeating simpleversion of Dijkstra's algorithm |N| times (for eahof |N| soures)
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Alternative algorithms

◮ Dijkstra and FW assume non-negative weights
◮ not a problem for network appliations
◮ for more general appliations, use Bellman-Ford

⊲ an be used on graphs with negative edgeweights

⊲ as long as the graph ontains no negative ylereahable from the soure node
◮ Johnson's algorithm solves all pairs shortest paths,may be faster than Floyd-Warshall on sparsegraphs.
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We will see a version of Bellman-Ford later on in this ourse.
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Routing implementation

◮ must obtain onsistent results between routers

⊲ to avoid route loops, or dead-ends

◮ must adapt to hanging network

⊲ route around link or node failures

◮ must use a distributed algorithm

⊲ an algorithm whih enables a ommon objetive of two ormore peer proesses to be performed jointly by theombination of proessing and exhanging information.

⊲ The distributed algorithm is broken down into a set of loalalgorithms, one of whih is performed by eah peer proess.

⊲ Eah loal proess arries out various operations on theavailable data, and at various points in the algorithm, itsends/reeives data to/from other peer proesses.
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SPF implementation

Implementation is performed by a routing protool
◮ routing protool performs SPF alulation
◮ �rst needs to �nd out the topology, and weights
◮ eah router �oods its available topology informationto all other routers

⊲ takes the form of LSAs
⋆ Link State Announements
⋆ a router sends LSA desribing its links toadjaent routers

ld LSA inludes link weight
⋆ neighbours forward (non-dupliate) LSAs totheir neighbours

⊲ hene this is alled a link-state routing protool
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SPF implementation

◮ one a router has seen all LSA

⊲ it knows the omplete topology

⊲ it an perform Dijkstra to ompute shortestpaths to all other routers

◮ note that eah router only needs to performDijkstra one

⊲ it only needs to know paths from itself, to theother routers.

⊲ hene O(|N|2) for simple implementation

⊲ O(|N|3) workload is distributed over |N| routers
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SPF routing implementations
◮ ommon implementations

⊲ OSPF [1℄

⋆ Open Shortest Path First
⋆ several RFCs needed to see all possibilities

⊲ IS-IS [2℄

⋆ Intermediate System-Intermediate System

⋆ several RFCs needed to see all possibilities

◮ some amusement: RFC 4041, �Requirements forMorality Setions in Routing Area Drafts�

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txtIt has often been the ase that morality has not been given properonsideration in the design and spei�ation of protools produed withinthe Routing Area. This has led to a deline in the moral values within theInternet and attempts to retro�t a suitable moral ode to implementedand deployed protools has been shown to be sub-optimal...
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ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt


OSPF

◮ soft state

⊲ periodially refresh LSA information

⊲ also exhange hello messages (betweenneighbouring routers) to test link states

⊲ in ase a failure happens, and isn't deteted

◮ not routed

⊲ LSAs are just sent in IP pakets

⋆ like everything else

⊲ transmitted over IP (protool 89)

⋆ not over TCP, so not reliable transport

⊲ but you an't route, until you have routes

⊲ hene forwarding of LSAs is limited to adjaentrouters
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Saling of OSPF

◮ as noted earlier, if |N| is too large, omputing SPFtakes too long, and we run into problems
◮ how an you build large (|N| ∼ 1000) networks
◮ use (2 level) hierahy

⊲ in subnetworks ompute shortest paths
⊲ ompute the shortest paths between subnets

⊲ ombine the two
◮ not as simple as it sounds

⊲ example OSPF areas
⊲ area 0 is the bakbone (1st level)

⊲ other areas are the subnetworks (2nd level)
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Saling of OSPF

area 1

area 2

area 3

area 0
a different AS

Communications Network Design: lecture 07 – p.23/44

Communications Network Design: lecture 07 – p.23/44

Load balaning

◮ in some ases there will be two (or more) equaldistane paths from soure to destination
◮ Dijkstra and FW only give you one path
◮ solution is non-unique

◮ more ef�ient to share load over both paths

10.0.0.0/8

shortest paths

1 2

3

4

5 6
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Dijkstra and load balaning

◮ for all destination nodes in graph, you have ashortest path

◮ start at a partiular destination

◮ reursively desend through neighbours at the rightdistane bak

◮ algorithm exponential in number of paths, but this ishopefully small
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Dijkstra and load balaning ex.

shortest paths

all links have unit weight

10.0.0.0/8
1 2

3

4

5 6

7 8
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Load balaning implementation

◮ method one

⊲ split traf� up by addresses

⊲ instead of a simple forwarding table

⋆ e.g. at router 2, the next hop router to pre�x10.0.0.0/8 is router 3

⊲ have two forwarding table entries

⊲ e.g. forwarding table (at router 2)

destination next hop router10.0.0.0/9 310.1.0.0/9 4

◮ traf� betwen different pre�xes may be uneven
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Load balaning implementation
◮ method two

⊲ need multiple paths in forwarding tabledestination next hop router10.0.0.0/8 3 or 4
⊲ alloate traf� between two next hops randomlyas it arrives

⊲ method is simpler to administrate
⊲ better balane of traf�
⊲ may reorder pakets

◮ method two(b)
⊲ randomize �rst paket of a �ow

⊲ subsequent pakets of �ow follow same route
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Load balaning implementation

◮ method three

⊲ alloate traf� randomly between two paths

⊲ but randomization is based on a hash of the IPsoure and destination address

⊲ effet is random alloation

⋆ but with all pakets between same soure anddestination using the same path

⋆ so no reordering within a TCP onnetion

⊲ hash needs to be randomized at eah node,otherwise multiple splits don't work

⋆ different seeds for randomization at eahrouter
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Load balaning implementation
◮ method 3 without random seeds in hashes

10.0.0.0/8

no traffic

traffic flows

h(i)=1

h(i)=1

h( ) is the hash
   1 = interface 1
   2 = interface 2

1 2

3

4

5

6

7

8

9
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Link weights

What should be the link weights αe?

◮ real, physial distane?

◮ delay of pakets along link?

◮ hop ount (e.g. αe = 1)?

◮ some arbitrary number?Ciso default

◮ inverse apaity weights αe = A/re

◮ the higher apaity links are nominally �shorter�

◮ enourages traf� to use higher apaity links

◮ it an lead to weird routing
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Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

r =10e

r =1e

r =10e

r =100e

◮ may think don't need link between Ballarat andBordertown, beause it has no traf�
◮ but its just beause routing is taking a longer path

⊲ diret path: D = we = 100/re = 100

⊲ indiret path: D = 10+10+1 = 21

◮ inverse apaity is often the wrong hoie
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Link weights

◮ orret hoie depends on objetives

◮ ommon ases our when minimizing delays:

⊲ if propagation delay is dominant

⋆ minimize physial path distane

⋆ weight = link distane, e.g. αe = de

⊲ if proessing and transmission time dominate

⋆ minimize the hop ount, e.g. αe = 1
⊲ if queueing auses most delays, need to minimizeloads on links

⋆ early ARPANET had load-sensitive routing

⋆ measured paket delays along links (to get αe)

⋆ sent paket along shortest (delay) path

◮ an also write link weight hoie as an optimizationproblem (alled traf� engineering)
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Inremental Dijkstra

As noted above, Dijkstra doesn't sale as well as wemight like.

◮ network of 1000 nodes need some kind of hierahy
◮ alternatively, note that most of the time thenetwork doesn't hange

⊲ when it does hange, it is usually only a loalhange in a few links
⊲ perhaps we don't have to reompute everythingfrom srath?

◮ inremental Dijkstra algorithm
◮ latest implementations use inremental Dijkstra.

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html
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GeneralizationWe foused here on IP routing

◮ but routing is needed in most ommuniationsnetworksShortest paths used in many areas � not justommuniations networks

◮ there are many other types of networks

⊲ often want shortest paths on these

⊲ e.g. for �nding lose linkages in soial networks

◮ not always obvious what's a network

⊲ Dijkstra used in image proessing

⊲ pixels form a grid, whih is a network

◮ Dijkstra is often a omponent of another algorithm
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Link state vs Distane Vetor
◮ We saw OSPF was a link-state routing protool

⊲ �oods topology (link states), and omputes SPF
⊲ solves shortest path problem

◮ alternative is alled distane-vetor protool
⊲ examples: RIP, IGRP, ...
⊲ originally also aimed to solve shortest paths

⋆ but nodes don't need to know ompletetopology
◮ hybrids exist, e.g. EIGRP
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Distane Vetor

◮ Make a list of destinations you an reah and thedistane to these destinations.

⊲ Store in routing table

◮ Share this list with your neighbours

◮ Add to routing table new information gained fromadjaent routers about the destinations they anreah

⊲ remember to inrement their distane

⊲ keep the soure as the next hop

◮ If two paths to the same destination exists, keepthe shortest distane path.

◮ Repeat periodially (in RIP every 30 seonds).
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Distane Vetor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinityinfinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 no route
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Sink treesResults of algorithm must be a sink tree

◮ �sink� is destination

◮ get a tree leading to the destination

◮ must be a tree: shortest path an only be omposedof shortest paths

destination

sources
1

3

4

5

6
7

8

9
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Distane Vetor

◮ also alled Distributed Bellman-Ford
◮ proved onverges for shortest path routing

⊲ ordering and timing of updates doesn't matter
◮ hief advantages

⊲ history (RIP invented way bak in ARPANET)

⊲ simpliity

⋆ example of Ciso RIP on�guration
router rip

network 10.1.0.0

◮ problems
⊲ onvergene time (minutes)

⊲ saling (of RIP)
⊲ ount to in�nity
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Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3
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RIPRouting Information Protool (RIP)

◮ RIP was �rst developed in early ARPANET
⊲ RIPv1, de�ned in RFC 1058 [3℄ (1988)
⊲ RIPv2, de�ned in RFC 1723 [4℄ (1994)

⋆ introdued lassless routing (CIDR)
⊲ RIPng, de�ned in RFC 2080 (IPv6)
⊲ MDS authentiation RFC 2082.

◮ implementation
⊲ uses UDP over IP, on port 520 to arry its data

⋆ see RFCs for paket formats

⊲ router transmits full updates every 30 seonds

⋆ by default
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RIP

◮ ount-to-in�nity mitigated using

⊲ split horizon with poison reverse

⊲ triggered updates

◮ ount-to-in�nity stopped

⊲ maximum distane = 15

⊲ in�nity = 16

◮ problems

⊲ onvergene is slow

⊲ ount to 16 an still be slow

⊲ generates lots of traf�

⊲ maximum length path is 16
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