
Communiations Network Designleture 07Matthew Roughan

<matthew.roughan@adelaide.edu.au>Disipline of Applied MathematisShool of Mathematial SienesUniversity of AdelaideMarh 26, 2009

Communications Network Design: lecture 07 – p.1/44

This leture ontinues the disussion of shortest-path routing. It provides a new algorithm(Floyd-Warshall) and so details of how shortest-path routing is implemented in the Internet.

Communications Network Design: lecture 07 – p.1/44

Routing (ontinued)

We ontinue the algorithmi viewpoint by onsidering analternative to Dijkstra alled the Floyd-Warshallalgorithm. Also we onsider routing implementation:OSPF, IS-IS, and some misellaneous issues suh as loadbalaning. Finally we will look into the distributedBellman-Ford dynami programming algorithm asimplemented in RIP.
Communications Network Design: lecture 07 – p.2/44

Communications Network Design: lecture 07 – p.2/44

Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest pathproblem

◮ same input as Dijkstra (exept no start node)

◮ add nodes in one by one, and ompute shortestpaths as you add in a node

⊲ shortest path is either the same

⊲ or hanges to inlude the new node

Communications Network Design: lecture 07 – p.3/44

Communications Network Design: lecture 07 – p.3/44

Floyd-Warshall

Let D(k)
i j denote the shortest path length from node i tonode j using intermediate nodes from 1 to k only.Initialise: D(0)

i j = di j ∀ i, j ∈ N

V (0) = [0], an |N|× |N| zero matrix.Step: for k = 1,2, . . .n, ompute new distane estimates

D(k)
i j =min{D(k−1)

i j ,D(k−1)
ik +D(k−1)

k j } ∀ i 6= jCompute the predeessor nodesIf D(k)
i j < D(k−1)

i j put V (k)
i j = k;otherwise, V (k)

i j = V (k−1)
i j

Communications Network Design: lecture 07 – p.4/44

Communications Network Design: lecture 07 – p.4/44

Floyd-Warshall

◮ The initialisation step gives the shortest pathlengths subjet to no intermediate nodes

◮ For a given k, D(k−1)
i j gives the shortest path from ito j using only nodes 1 through k−1 as possibleintermediate nodes.

◮ On allowing node k as an intermediate node, either kIS on the shortest path, or it isn't.

⊲ it isn't: keep the same distane, and path

⋆ D(k)
i j = D(k−1)

i j and V (k)
i j = V (k−1)

i j

⊲ it is: the new path must be made of twoshortest paths, joined by node k, i.e. i−k and k−j

⋆ D(k)
i j = D(k−1)

ik +D(k−1)
k j

⋆ V (k)
i j shows where the join ourred

Communications Network Design: lecture 07 – p.5/44

Communications Network Design: lecture 07 – p.5/44

Floyd-Warshall

◮ The 0's in V (n) determine the adjaenies (links) inthe �nal network.

⊲ V (n)
i j indiates that we never found a shorterpath than di j along the diret path.

⊲ hene i and j are adjaent in the SPF tree
◮ The other terms in V (n) show the predeessor nodesfor eah end-to-end path.

⊲ onstrut paths, by onatenating predeessornodes
Communications Network Design: lecture 07 – p.6/44

Communications Network Design: lecture 07 – p.6/44

Floyd-Warshall example

3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.7/44

Communications Network Design: lecture 07 – p.7/44

Floyd-Warshall example

Initially, we put diret links into the matrix D
D(0)

i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (0) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1
1

2 4

3 5

Communications Network Design: lecture 07 – p.8/44

Communications Network Design: lecture 07 – p.8/44

Floyd-Warshall example

k = 1: inlude node 1 on existing diret paths (so anypath already ontaining node 1 e.g. top line and �rstolumn of D, an be ignored). Here, nothing hanges.

D(1)
i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (1) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.9/44

Communications Network Design: lecture 07 – p.9/44

Floyd-Warshall example

k = 2: try inluding node 2 on existing paths (so any pathalready ontaining node 2 e.g. line 2 and seond olumnof D, an be ignored).

D(2)
i j =

1 2 3 4 5

1 0 6 3 10 7
2 0 2 4 1
3 0 1 3
4 0 5
5 0

V (2) =

1 2 3 4 5

1 0 0 0 2 2
2 0 0 0 0
3 0 0 2
4 0 0
5 0

3

6

4

6

2 5

1

1

10

7
3

1

4

3 5

2

Communications Network Design: lecture 07 – p.10/44

Communications Network Design: lecture 07 – p.10/44

Floyd-Warshall example

k = 3: try inluding node 3 on existing paths (so any pathalready ontaining node 3 e.g. line 3 and third olumn of

D, an be ignored).

D(3)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (3) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1
5

4

1

4

5

2

3

E.G. The old path joining 4-5 was a diret link withdistane D(2)
45 = 5. But when we are allowed to inludenode 3, we get an alternative D(2)

43 +D(2)
35 = 4, whih isbetter, so we set D(3)

45 = 4, and V (3)
45 = 3.

Communications Network Design: lecture 07 – p.11/44

Communications Network Design: lecture 07 – p.11/44

Floyd-Warshall example

k = 4: try inluding node 4 on existing paths:No hanges.

D(4)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (4) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1

2

3 5

1

4

Communications Network Design: lecture 07 – p.12/44

Communications Network Design: lecture 07 – p.12/44

Floyd-Warshall example

k = 5: try inluding node 5 on existing paths. The entries

D(5)
i j give the length of the shortest path from eah node

i to eah other node j.

D(5)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (5) =

1 2 3 4 5

1 0 3 0 3 3

2 0 0 3 0

3 0 0 2
4 0 3
5 0Use the boxed zero entries in the �nal V to determinelinks: (1,3), (2,3), (2,5), (3,4).

Communications Network Design: lecture 07 – p.13/44

Communications Network Design: lecture 07 – p.13/44

Floyd-Warshall shortest paths

3
2

1

1
1

3

2 4

5

Communications Network Design: lecture 07 – p.14/44

Note that the solution is the same as the one we found with Dijkstra. However, that isn'tguaranteed. In some ases, there may be multiple equal-length shortest paths. The pathyou �nd depends on the ordering of the nodes in the various tehniques, so depending onimplementation, even two different versions of Dijkstra ould return a different SPF tree. Wewill onsider this issue a little more later on.

Communications Network Design: lecture 07 – p.14/44

Floyd-Warshall omplexity

◮ In alulating D(k)
i j at eah step, we need to omparetwo possibilities for eah of |N|(|N|−1)

2

pairs ofnodes.

◮ the algorithm has |N| steps

◮ total omputational omplexity is O(|N|3).

◮ This of ourse is the same as repeating simpleversion of Dijkstra's algorithm |N| times (for eahof |N| soures)

Communications Network Design: lecture 07 – p.15/44

Communications Network Design: lecture 07 – p.15/44

Alternative algorithms

◮ Dijkstra and FW assume non-negative weights
◮ not a problem for network appliations
◮ for more general appliations, use Bellman-Ford

⊲ an be used on graphs with negative edgeweights

⊲ as long as the graph ontains no negative ylereahable from the soure node
◮ Johnson's algorithm solves all pairs shortest paths,may be faster than Floyd-Warshall on sparsegraphs.

Communications Network Design: lecture 07 – p.16/44

We will see a version of Bellman-Ford later on in this ourse.

Communications Network Design: lecture 07 – p.16/44

Routing implementation

◮ must obtain onsistent results between routers

⊲ to avoid route loops, or dead-ends

◮ must adapt to hanging network

⊲ route around link or node failures

◮ must use a distributed algorithm

⊲ an algorithm whih enables a ommon objetive of two ormore peer proesses to be performed jointly by theombination of proessing and exhanging information.

⊲ The distributed algorithm is broken down into a set of loalalgorithms, one of whih is performed by eah peer proess.

⊲ Eah loal proess arries out various operations on theavailable data, and at various points in the algorithm, itsends/reeives data to/from other peer proesses.

Communications Network Design: lecture 07 – p.17/44

Communications Network Design: lecture 07 – p.17/44

SPF implementation

Implementation is performed by a routing protool
◮ routing protool performs SPF alulation
◮ �rst needs to �nd out the topology, and weights
◮ eah router �oods its available topology informationto all other routers

⊲ takes the form of LSAs
⋆ Link State Announements
⋆ a router sends LSA desribing its links toadjaent routers

ld LSA inludes link weight
⋆ neighbours forward (non-dupliate) LSAs totheir neighbours

⊲ hene this is alled a link-state routing protool

Communications Network Design: lecture 07 – p.18/44

Communications Network Design: lecture 07 – p.18/44

SPF implementation

◮ one a router has seen all LSA

⊲ it knows the omplete topology

⊲ it an perform Dijkstra to ompute shortestpaths to all other routers

◮ note that eah router only needs to performDijkstra one

⊲ it only needs to know paths from itself, to theother routers.

⊲ hene O(|N|2) for simple implementation

⊲ O(|N|3) workload is distributed over |N| routers

Communications Network Design: lecture 07 – p.19/44

Communications Network Design: lecture 07 – p.19/44

SPF routing implementations
◮ ommon implementations

⊲ OSPF [1℄

⋆ Open Shortest Path First
⋆ several RFCs needed to see all possibilities

⊲ IS-IS [2℄

⋆ Intermediate System-Intermediate System

⋆ several RFCs needed to see all possibilities

◮ some amusement: RFC 4041, �Requirements forMorality Setions in Routing Area Drafts�

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txtIt has often been the ase that morality has not been given properonsideration in the design and spei�ation of protools produed withinthe Routing Area. This has led to a deline in the moral values within theInternet and attempts to retro�t a suitable moral ode to implementedand deployed protools has been shown to be sub-optimal...

Communications Network Design: lecture 07 – p.20/44

Communications Network Design: lecture 07 – p.20/44

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

OSPF

◮ soft state

⊲ periodially refresh LSA information

⊲ also exhange hello messages (betweenneighbouring routers) to test link states

⊲ in ase a failure happens, and isn't deteted

◮ not routed

⊲ LSAs are just sent in IP pakets

⋆ like everything else

⊲ transmitted over IP (protool 89)

⋆ not over TCP, so not reliable transport

⊲ but you an't route, until you have routes

⊲ hene forwarding of LSAs is limited to adjaentrouters

Communications Network Design: lecture 07 – p.21/44

Communications Network Design: lecture 07 – p.21/44

Saling of OSPF

◮ as noted earlier, if |N| is too large, omputing SPFtakes too long, and we run into problems
◮ how an you build large (|N| ∼ 1000) networks
◮ use (2 level) hierahy

⊲ in subnetworks ompute shortest paths
⊲ ompute the shortest paths between subnets

⊲ ombine the two
◮ not as simple as it sounds

⊲ example OSPF areas
⊲ area 0 is the bakbone (1st level)

⊲ other areas are the subnetworks (2nd level)

Communications Network Design: lecture 07 – p.22/44

Communications Network Design: lecture 07 – p.22/44

Saling of OSPF

area 1

area 2

area 3

area 0
a different AS

Communications Network Design: lecture 07 – p.23/44

Communications Network Design: lecture 07 – p.23/44

Load balaning

◮ in some ases there will be two (or more) equaldistane paths from soure to destination
◮ Dijkstra and FW only give you one path
◮ solution is non-unique

◮ more ef�ient to share load over both paths

10.0.0.0/8

shortest paths

1 2

3

4

5 6

Communications Network Design: lecture 07 – p.24/44

Communications Network Design: lecture 07 – p.24/44

Dijkstra and load balaning

◮ for all destination nodes in graph, you have ashortest path

◮ start at a partiular destination

◮ reursively desend through neighbours at the rightdistane bak

◮ algorithm exponential in number of paths, but this ishopefully small

Communications Network Design: lecture 07 – p.25/44

Communications Network Design: lecture 07 – p.25/44

Dijkstra and load balaning ex.

shortest paths

all links have unit weight

10.0.0.0/8
1 2

3

4

5 6

7 8

Communications Network Design: lecture 07 – p.26/44

Communications Network Design: lecture 07 – p.26/44

Load balaning implementation

◮ method one

⊲ split traf� up by addresses

⊲ instead of a simple forwarding table

⋆ e.g. at router 2, the next hop router to pre�x10.0.0.0/8 is router 3

⊲ have two forwarding table entries

⊲ e.g. forwarding table (at router 2)

destination next hop router10.0.0.0/9 310.1.0.0/9 4

◮ traf� betwen different pre�xes may be uneven

Communications Network Design: lecture 07 – p.27/44

Communications Network Design: lecture 07 – p.27/44

Load balaning implementation
◮ method two

⊲ need multiple paths in forwarding tabledestination next hop router10.0.0.0/8 3 or 4
⊲ alloate traf� between two next hops randomlyas it arrives

⊲ method is simpler to administrate
⊲ better balane of traf�
⊲ may reorder pakets

◮ method two(b)
⊲ randomize �rst paket of a �ow

⊲ subsequent pakets of �ow follow same route

Communications Network Design: lecture 07 – p.28/44

Communications Network Design: lecture 07 – p.28/44

Load balaning implementation

◮ method three

⊲ alloate traf� randomly between two paths

⊲ but randomization is based on a hash of the IPsoure and destination address

⊲ effet is random alloation

⋆ but with all pakets between same soure anddestination using the same path

⋆ so no reordering within a TCP onnetion

⊲ hash needs to be randomized at eah node,otherwise multiple splits don't work

⋆ different seeds for randomization at eahrouter

Communications Network Design: lecture 07 – p.29/44

Communications Network Design: lecture 07 – p.29/44

Load balaning implementation
◮ method 3 without random seeds in hashes

10.0.0.0/8

no traffic

traffic flows

h(i)=1

h(i)=1

h() is the hash
 1 = interface 1
 2 = interface 2

1 2

3

4

5

6

7

8

9

Communications Network Design: lecture 07 – p.30/44

Communications Network Design: lecture 07 – p.30/44

Link weights

What should be the link weights αe?

◮ real, physial distane?

◮ delay of pakets along link?

◮ hop ount (e.g. αe = 1)?

◮ some arbitrary number?Ciso default

◮ inverse apaity weights αe = A/re

◮ the higher apaity links are nominally �shorter�

◮ enourages traf� to use higher apaity links

◮ it an lead to weird routing

Communications Network Design: lecture 07 – p.31/44

Communications Network Design: lecture 07 – p.31/44

Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

r =10e

r =1e

r =10e

r =100e

◮ may think don't need link between Ballarat andBordertown, beause it has no traf�
◮ but its just beause routing is taking a longer path

⊲ diret path: D = we = 100/re = 100

⊲ indiret path: D = 10+10+1 = 21

◮ inverse apaity is often the wrong hoie

Communications Network Design: lecture 07 – p.32/44

Communications Network Design: lecture 07 – p.32/44

Link weights

◮ orret hoie depends on objetives

◮ ommon ases our when minimizing delays:

⊲ if propagation delay is dominant

⋆ minimize physial path distane

⋆ weight = link distane, e.g. αe = de

⊲ if proessing and transmission time dominate

⋆ minimize the hop ount, e.g. αe = 1
⊲ if queueing auses most delays, need to minimizeloads on links

⋆ early ARPANET had load-sensitive routing

⋆ measured paket delays along links (to get αe)

⋆ sent paket along shortest (delay) path

◮ an also write link weight hoie as an optimizationproblem (alled traf� engineering)

Communications Network Design: lecture 07 – p.33/44

Communications Network Design: lecture 07 – p.33/44

Inremental Dijkstra

As noted above, Dijkstra doesn't sale as well as wemight like.

◮ network of 1000 nodes need some kind of hierahy
◮ alternatively, note that most of the time thenetwork doesn't hange

⊲ when it does hange, it is usually only a loalhange in a few links
⊲ perhaps we don't have to reompute everythingfrom srath?

◮ inremental Dijkstra algorithm
◮ latest implementations use inremental Dijkstra.

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

Communications Network Design: lecture 07 – p.34/44

Communications Network Design: lecture 07 – p.34/44

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

GeneralizationWe foused here on IP routing

◮ but routing is needed in most ommuniationsnetworksShortest paths used in many areas � not justommuniations networks

◮ there are many other types of networks

⊲ often want shortest paths on these

⊲ e.g. for �nding lose linkages in soial networks

◮ not always obvious what's a network

⊲ Dijkstra used in image proessing

⊲ pixels form a grid, whih is a network

◮ Dijkstra is often a omponent of another algorithm

Communications Network Design: lecture 07 – p.35/44

Communications Network Design: lecture 07 – p.35/44

Link state vs Distane Vetor
◮ We saw OSPF was a link-state routing protool

⊲ �oods topology (link states), and omputes SPF
⊲ solves shortest path problem

◮ alternative is alled distane-vetor protool
⊲ examples: RIP, IGRP, ...
⊲ originally also aimed to solve shortest paths

⋆ but nodes don't need to know ompletetopology
◮ hybrids exist, e.g. EIGRP

Communications Network Design: lecture 07 – p.36/44

Communications Network Design: lecture 07 – p.36/44

Distane Vetor

◮ Make a list of destinations you an reah and thedistane to these destinations.

⊲ Store in routing table

◮ Share this list with your neighbours

◮ Add to routing table new information gained fromadjaent routers about the destinations they anreah

⊲ remember to inrement their distane

⊲ keep the soure as the next hop

◮ If two paths to the same destination exists, keepthe shortest distane path.

◮ Repeat periodially (in RIP every 30 seonds).

Communications Network Design: lecture 07 – p.37/44

Communications Network Design: lecture 07 – p.37/44

Distane Vetor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinityinfinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 no route

Communications Network Design: lecture 07 – p.38/44

Communications Network Design: lecture 07 – p.38/44

Sink treesResults of algorithm must be a sink tree

◮ �sink� is destination

◮ get a tree leading to the destination

◮ must be a tree: shortest path an only be omposedof shortest paths

destination

sources
1

3

4

5

6
7

8

9

Communications Network Design: lecture 07 – p.39/44

Communications Network Design: lecture 07 – p.39/44

Distane Vetor

◮ also alled Distributed Bellman-Ford
◮ proved onverges for shortest path routing

⊲ ordering and timing of updates doesn't matter
◮ hief advantages

⊲ history (RIP invented way bak in ARPANET)

⊲ simpliity

⋆ example of Ciso RIP on�guration
router rip

network 10.1.0.0

◮ problems
⊲ onvergene time (minutes)

⊲ saling (of RIP)
⊲ ount to in�nity

Communications Network Design: lecture 07 – p.40/44

Communications Network Design: lecture 07 – p.40/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

Communications Network Design: lecture 07 – p.41/44

Communications Network Design: lecture 07 – p.41/44

RIPRouting Information Protool (RIP)

◮ RIP was �rst developed in early ARPANET
⊲ RIPv1, de�ned in RFC 1058 [3℄ (1988)
⊲ RIPv2, de�ned in RFC 1723 [4℄ (1994)

⋆ introdued lassless routing (CIDR)
⊲ RIPng, de�ned in RFC 2080 (IPv6)
⊲ MDS authentiation RFC 2082.

◮ implementation
⊲ uses UDP over IP, on port 520 to arry its data

⋆ see RFCs for paket formats

⊲ router transmits full updates every 30 seonds

⋆ by default
Communications Network Design: lecture 07 – p.42/44

Communications Network Design: lecture 07 – p.42/44

RIP

◮ ount-to-in�nity mitigated using

⊲ split horizon with poison reverse

⊲ triggered updates

◮ ount-to-in�nity stopped

⊲ maximum distane = 15

⊲ in�nity = 16

◮ problems

⊲ onvergene is slow

⊲ ount to 16 an still be slow

⊲ generates lots of traf�

⊲ maximum length path is 16

Communications Network Design: lecture 07 – p.43/44

Communications Network Design: lecture 07 – p.43/44

References[1℄ J. Moy, �OSPF Version 2.� IETF, Request for Comments: 2328, 1998.[2℄ D. Oran, �OSI IS-IS Intra-domain Routing Protool.� IETF, Request for Comments:1142, 1990.[3℄ C. Hedrik, �Routing Information Protool.� IETF, Request for Comments: 1058,1988.[4℄ G. Malkin, �RIP Version 2.� IETF, Request for Comments: 1723, 1994.

Communications Network Design: lecture 07 – p.44/44

	
	
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall shortest paths
	
	Floyd-Warshall complexity
	
	Alternative algorithms
	
	Routing implementation
	
	SPF implementation
	
	SPF implementation
	
	SPF routing implementations
	
	OSPF
	
	Scaling of OSPF
	
	Scaling of OSPF
	
	Load balancing
	
	Dijkstra and load balancing
	
	Dijkstra and load balancing ex.
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Link weights
	
	Link weights
	
	Link weights
	
	Incremental Dijkstra
	
	Generalization
	
	Link state vs Distance Vector
	
	Distance Vector
	
	Distance Vector example
	
	Sink trees
	
	Distance Vector
	
	Count to infinity
	
	RIP
	
	RIP
	
	

