Communications Network Design

 lecture 07Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 1, 2009

Routing (continued)

We continue the algorithmic viewpoint by considering an alternative to Dijkstra called the Floyd-Warshall algorithm. Also we consider routing implementation: OSPF, IS-IS, and some miscellaneous issues such as load balancing. Finally we will look into the distributed Bellman-Ford dynamic programming algorithm as implemented in RIP.

Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest path problem

- same input as Dijkstra (except no start node)
- add nodes in one by one, and compute shortest paths as you add in a node
- shortest path is either the same
- or changes to include the new node

Floyd-Warshall

Let $D_{i j}^{(k)}$ denote the shortest path length from node i to node j using intermediate nodes from 1 to k only.

Initialise: $D_{i j}^{(0)}=d_{i j} \quad \forall i, j \in N$

$$
V^{(0)}=[0] \text {, an }|N| \times|N| \text { zero matrix. }
$$

Step: for $k=1,2, \ldots n$, compute new distance estimates

$$
D_{i j}^{(k)}=\min \left\{D_{i j}^{(k-1)}, D_{i k}^{(k-1)}+D_{k j}^{(k-1)}\right\} \quad \forall i \neq j
$$

Compute the predecessor nodes

$$
\begin{aligned}
& \text { If } D_{i j}^{(k)}<D_{i j}^{(k-1)} \text { put } V_{i j}^{(k)}=k \text {; } \\
& \text { otherwise, } V_{i j}^{(k)}=V_{i j}^{(k-1)}
\end{aligned}
$$

Floyd-Warshall

- The initialisation step gives the shortest path lengths subject to no intermediate nodes
- For a given $k, D_{i j}^{(k-1)}$ gives the shortest path from i to j using only nodes 1 through $k-1$ as possible intermediate nodes.
- On allowing node k as an intermediate node, either k IS on the shortest path, or it isn't.
- it isn't: keep the same distance, and path
$\square D_{i j}^{(k)}=D_{i j}^{(k-1)}$ and $V_{i j}^{(k)}=V_{i j}^{(k-1)}$
- it is: the new path must be made of two shortest paths, joined by node k, i.e. $i-k$ and $k-j$
- $D_{i j}^{(k)}=D_{i k}^{(k-1)}+D_{k j}^{(k-1)}$
- $V_{i j}^{(k)}$ shows where the join occurred

Floyd-Warshall

- The O's in $V^{(n)}$ determine the adjacencies (links) in the final network.
- $V_{i j}^{(n)}$ indicates that we never found a shorter path than $d_{i j}$ along the direct path.
\square hence i and j are adjacent in the SPF tree
- The other terms in $V^{(n)}$ show the predecessor nodes for each end-to-end path.
- construct paths, by concatenating predecessor nodes

Floyd-Warshall example

Communications Network Design: lecture 07 - p. $7 / 44$

Floyd-Warshall example

Initially, we put direct links into the matrix D

$$
D_{i j}^{(0)}=\begin{array}{c|ccccc}
& 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & 6 & 3 & \infty & \infty \\
2 & & 0 & 2 & 4 & 1 \\
3 & & & 0 & 1 & 6 \\
4 & & & & 0 & 5 \\
5 & & & & & 0
\end{array}
$$

$V^{(0)}=$| | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | | 0 | 0 | 0 | 0 |
| 3 | | | 0 | 0 | 0 |
| 4 | | | | 0 | 0 |
| 5 | | | | | 0 |

Floyd-Warshall example

$k=1$: include node 1 on existing direct paths (so any path already containing node 1 e.g. top line and first column of D, can be ignored). Here, nothing changes.

$$
D_{i j}^{(1)}=\begin{array}{c|ccccc}
& 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & 6 & 3 & \infty & \infty \\
2 & & 0 & 2 & 4 & 1 \\
3 & & & 0 & 1 & 6 \\
4 & & & & 0 & 5 \\
5 & & & & & 0
\end{array}
$$

$V^{(1)}=$| | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | | 0 | 0 | 0 | 0 |
| 3 | | | 0 | 0 | 0 |
| 4 | | | | 0 | 0 |
| 5 | | | | | 0 |

Floyd-Warshall example

$\mathbf{k}=2$: try including node 2 on existing paths (so any path already containing node 2 e.g. line 2 and second column of D, can be ignored).

Floyd-Warshall example

$\mathrm{k}=3$: try including node 3 on existing paths (so any path already containing node 3 e.g. line 3 and third column of D, can be ignored).

$$
D_{i j}^{(3)}=\begin{array}{l|lllll}
& 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & \mathbf{5} & 3 & \mathbf{4} & \mathbf{6} \\
2 & & 0 & 2 & 3 & 1 \\
3 & & & 0 & 1 & 3 \\
4 & & & 0 & 4 \\
5 & & & & & 0
\end{array} \quad V^{(3)}=\begin{array}{lllll}
& 1 & 2 & 3 & 4 \\
\hline 1 & 0 & 3 & 0 & 3 \\
2 & 3 \\
3 & 0 & 0 & 3 & 0 \\
& & 0 & 0 & 2 \\
4 & & & & 0 \\
5 & & & & \\
5
\end{array}
$$

E.G. The old path joining 4-5 was a direct link with distance $D_{45}^{(2)}=5$. But when we are allowed to include node 3, we get an alternative $D_{43}^{(2)}+D_{35}^{(2)}=4$, which is better, so we set $D_{45}^{(3)}=4$, and $V_{45}^{(3)}=3$.

Floyd-Warshall example

$\mathrm{k}=4$: try including node 4 on existing paths:
No changes.

$V^{(4)}=$| | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 3 | 0 | 3 | 3 |
| 2 | | 0 | 0 | 3 | 0 |
| 3 | | | 0 | 0 | 2 |
| 4 | | | | 0 | 3 |
| 5 | | | | | 0 |

Floyd-Warshall example

$k=5$: try including node 5 on existing paths. The entries $D_{i j}^{(5)}$ give the length of the shortest path from each node i to each other node j.

$D_{i j}^{(5)}=$| | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 5 | 3 | 4 | 6 |
| 2 | | 0 | 2 | 3 | 1 |
| 3 | | | 0 | 1 | 3 |
| 4 | | | | 0 | 4 |
| 5 | | | | | 0 |

$V^{(5)}=$| | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 3 | 0 | 3 | 3 |
| 2 | | 0 | 0 | 3 | 0 |
| 3 | | | 0 | 0 | 2 |
| 4 | | | | 0 | 3 |
| 5 | | | | 0 | |

Use the boxed zero entries in the final V to determine links: $(1,3),(2,3),(2,5),(3,4)$.

Floyd-Warshall shortest paths

Communications Network Design: lecture 07 - p.14/44

Floyd-Warshall complexity

- In calculating $D_{i j}^{(k)}$ at each step, we need to compare two possibilities for each of $\frac{|N|(|N|-1)}{2}$ pairs of nodes.
- the algorithm has $|N|$ steps
- total computational complexity is $O\left(|N|^{3}\right)$.
- This of course is the same as repeating simple version of Dijkstra's algorithm $|N|$ times (for each of $|N|$ sources)

Alternative algorithms

- Dijkstra and FW assume non-negative weights
- not a problem for network applications
- for more general applications, use Bellman-Ford
- can be used on graphs with negative edge weights
- as long as the graph contains no negative cycle reachable from the source node
- Johnson's algorithm solves all pairs shortest paths, may be faster than Floyd-Warshall on sparse graphs.

Routing implementation

- must obtain consistent results between routers
- to avoid route loops, or dead-ends
- must adapt to changing network
- route around link or node failures
- must use a distributed algorithm
\square an algorithm which enables a common objective of two or more peer processes to be performed jointly by the combination of processing and exchanging information.
- The distributed algorithm is broken down into a set of local algorithms, one of which is performed by each peer process.
- Each local process carries out various operations on the available data, and at various points in the algorithm, it sends/receives data to/from other peer processes.

SPF implementation

Implementation is performed by a routing protocol

- routing protocol performs SPF calculation
- first needs to find out the topology, and weights
- each router floods its available topology information to all other routers
- takes the form of LSAs
- Link State Announcements
- a router sends LSA describing its links to adjacent routers
- LSA includes link weight
- neighbours forward (non-duplicate) LSAs to their neighbours
- hence this is called a link-state routing protocol

SPF implementation

- once a router has seen all LSA
- it knows the complete topology
- it can perform Dijkstra to compute shortest paths to all other routers
- note that each router only needs to perform Dijkstra once
- it only needs to know paths from itself, to the other routers.
- hence $O\left(|N|^{2}\right)$ for simple implementation
- $O\left(|N|^{3}\right)$ workload is distributed over $|N|$ routers

SPF routing implementations

- common implementations
- OSPF [1]
- Open Shortest Path First
several RFCs needed to see all possibilities
- IS-IS [2]
- Intermediate System-Intermediate System
- several RFCs needed to see all possibilities
- some amusement: RFC 4041, "Requirements for Morality Sections in Routing Area Drafts"
ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt
It has often been the case that morality has not been given proper consideration in the design and specification of protocols produced within the Routing Area. This has led to a decline in the moral values within the Internet and attempts to retrofit a suitable moral code to implemented and deployed protocols has been shown to be sub-optimal...

OSPF

- soft state
- periodically refresh LSA information
- also exchange hello messages (between neighbouring routers) to test link states
- in case a failure happens, and isn't detected
- not routed
- LSAs are just sent in IP packets
- like everything else
- transmitted over IP (protocol 89)
not over TCP, so not reliable transport
- but you can't route, until you have routes
- hence forwarding of LSAs is limited to adjacent routers

Scaling of OSPF

- as noted earlier, if $|N|$ is too large, computing SPF takes too long, and we run into problems
- how can you build large ($|N| \sim 1000$) networks
- use (2 level) hierachy
- in subnetworks compute shortest paths
- compute the shortest paths between subnets
- combine the two
- not as simple as it sounds
- example OSPF areas
- area 0 is the backbone (1st level)
- other areas are the subnetworks (2nd level)

Scaling of OSPF

Communications Network Design: lecture 07 - p.23/44

Scaling of OSPF

Communications Network Design: lecture 07 - p.23/44

Scaling of OSPF

Communications Network Design: lecture 07 - p.23/44

Load balancing

- in some cases there will be two (or more) equal distance paths from source to destination
- Dijkstra and FW only give you one path
- solution is non-unique
- more efficient to share load over both paths

Dijkstra and load balancing

- for all destination nodes in graph, you have a shortest path
- start at a particular destination
- recursively descend through neighbours at the right distance back
- algorithm exponential in number of paths, but this is hopefully small

Dijkstra and load balancing ex.

all links have unit weight

Dijkstra and load balancing ex.

distance from node 1

Dijkstra and load balancing ex.

Dijkstra and load balancing ex.

routes (so far)

Load balancing implementation

- method one
- split traffic up by addresses
- instead of a simple forwarding table
e.g. at router 2 , the next hop router to prefix 10.0.0.0/8 is router 3
- have two forwarding table entries
- e.g. forwarding table (at router 2)

destination	next hop router
$10.0 .0 .0 / 9$	3
10.1.0.0/9	4

- traffic betwen different prefixes may be uneven

Load balancing implementation

- method two
- need multiple paths in forwarding table

destination	next hop router
$10.0 .0 .0 / 8$	3 or 4

- allocate traffic between two next hops randomly as it arrives
- method is simpler to administrate
- better balance of traffic
- may reorder packets
- method two(b)
- randomize first packet of a flow
- subsequent packets of flow follow same route

Load balancing implementation

- method three
- allocate traffic randomly between two paths
- but randomization is based on a hash of the IP source and destination address
- effect is random allocation
but with all packets between same source and destination using the same path
- so no reordering within a TCP connection
- hash needs to be randomized at each node, otherwise multiple splits don't work
- different seeds for randomization at each router

Load balancing implementation

- method 3 without random seeds in hashes

Link weights

What should be the link weights α_{e} ?

- real, physical distance?
- delay of packets along link?
- hop count (e.g. $\alpha_{e}=1$)?
- some arbitrary number?

Cisco default

- inverse capacity weights $\alpha_{e}=A / r_{e}$
- the higher capacity links are nominally "shorter"
- encourages traffic to use higher capacity links
- it can lead to weird routing

Link weights

- may think don't need link between Ballarat and Bordertown, because it has no traffic
- but its just because routing is taking a longer path
- direct path: $D=w_{e}=100 / r_{e}=100$
- indirect path: $D=10+10+1=21$
- inverse capacity is often the wrong choice

Link weights

- may think don't need link between Ballarat and Bordertown, because it has no traffic
- but its just because routing is taking a longer path
- direct path: $D=w_{e}=100 / r_{e}=100$
- indirect path: $D=10+10+1=21$
- inverse capacity is often the wrong choice

Link weights

- correct choice depends on objectives
- common cases occur when minimizing delays:
- if propagation delay is dominant
- minimize physical path distance
- weight $=$ link distance, e.g. $\alpha_{e}=d_{e}$
- if processing and transmission time dominate minimize the hop count, e.g. $\alpha_{e}=1$
- if queueing causes most delays, need to minimize loads on links
- early ARPANET had load-sensitive routing
- measured packet delays along links (to get α_{e})
- sent packet along shortest (delay) path
- can also write link weight choice as an optimization problem (called traffic engineering)

Incremental Dijkstra

As noted above, Dijkstra doesn't scale as well as we might like.

- network of 1000 nodes need some kind of hierachy
- alternatively, note that most of the time the network doesn't change
- when it does change, it is usually only a local change in a few links
- perhaps we don't have to recompute everything from scratch?
- incremental Dijkstra algorithm
- latest implementations use incremental Dijkstra.

Generalization

We focused here on IP routing

- but routing is needed in most communications networks
Shortest paths used in many areas - not just communications networks
- there are many other types of networks
- often want shortest paths on these
- e.g. for finding close linkages in social networks
- not always obvious what's a network
- Dijkstra used in image processing
- pixels form a grid, which is a network
- Dijkstra is often a component of another algorithm

Link state vs Distance Vector

- We saw OSPF was a link-state routing protocol
- floods topology (link states), and computes SPF
- solves shortest path problem

■ alternative is called distance-vector protocol
■ examples: RIP, IGRP, ...

- originally also aimed to solve shortest paths
- but nodes don't need to know complete topology
■ hybrids exist, e.g. EIGRP

Distance Vector

- Make a list of destinations you can reach and the distance to these destinations.
- Store in routing table
- Share this list with your neighbours
- Add to routing table new information gained from adjacent routers about the destinations they can reach
- remember to increment their distance
- keep the source as the next hop
- If two paths to the same destination exists, keep the shortest distance path.
- Repeat periodically (in RIP every 30 seconds).

Distance Vector example

Sink trees

Results of algorithm must be a sink tree
■ "sink" is destination

- get a tree leading to the destination
- must be a tree: shortest path can only be composed of shortest paths

Sink trees

Results of algorithm must be a sink tree
■ "sink" is destination

- get a tree leading to the destination
- must be a tree: shortest path can only be composed of shortest paths

Distance Vector

- also called Distributed Bellman-Ford
- proved converges for shortest path routing
- ordering and timing of updates doesn't matter
- chief advantages
- history (RIP invented way back in ARPANET)
- simplicity
- example of Cisco RIP configuration

$$
\begin{aligned}
& \text { router rip } \\
& \text { network 10.1.0.0 }
\end{aligned}
$$

- problems
- convergence time (minutes)
- scaling (of RIP)
- count to infinity

Count to infinity

Count to infinity

10.1.0.0/24
subnet 10.1.0.0/24 next hop Ethernet 0 distance 1

R5

- link between R1 and R2 fails

■ R5 does not see the failure!

Count to infinity

R5

- route update from R5
- R5 does not know that its route is now invalid
- R2 does not know that R5's route is invalid
- a route loop is created

Count to infinity

R5

- R2 does not know R5's route is invalid
- so re-advertises
- R5 sees this as its only valid route

Count to infinity

- R5 re-advertises route

Count to infinity

R5

subnet	$10.1 .0 .0 / 24$
next hop	$R 2$
distance	7

- R2 re-advertises route

Count to infinity

R5

- this process continues indefinitely
- metrics slowly count to infinity

RIP

Routing Information Protocol (RIP)

- RIP was first developed in early ARPANET

■ RIPv1, defined in RFC 1058 [3] (1988)
■ RIPv2, defined in RFC 1723 [4] (1994)
\square introduced classless routing (CIDR)
■ RIPng, defined in RFC 2080 (IPv6)

- MDS authentication RFC 2082.
- implementation
- uses UDP over IP, on port 520 to carry its data - see RFCs for packet formats
- router transmits full updates every 30 seconds
- by default
- count-to-infinity mitigated using
- split horizon with poison reverse
- triggered updates
- count-to-infinity stopped
- maximum distance $=15$
- infinity = 16
- problems
- convergence is slow
- count to 16 can still be slow
- generates lots of traffic
- maximum length path is 16

References

[1] J. Moy, "OSPF Version 2." IETF, Request for Comments: 2328, 1998.
[2] D. Oran, "OSI IS-IS Intra-domain Routing Protocol." IETF, Request for Comments: 1142, 1990.
[3] C. Hedrick, "Routing Information Protocol." IETF, Request for Comments: 1058, 1988.
[4] G. Malkin, "RIP Version 2." IETF, Request for Comments: 1723, 1994.

