
Communiations Network Designleture 07Matthew Roughan
<matthew.roughan@adelaide.edu.au>Disipline of Applied MathematisShool of Mathematial SienesUniversity of AdelaideApril 1, 2009

Communications Network Design: lecture 07 – p.1/44

Routing (ontinued)

We ontinue the algorithmi viewpoint by onsidering analternative to Dijkstra alled the Floyd-Warshallalgorithm. Also we onsider routing implementation:OSPF, IS-IS, and some misellaneous issues suh as loadbalaning. Finally we will look into the distributedBellman-Ford dynami programming algorithm asimplemented in RIP.
Communications Network Design: lecture 07 – p.2/44

Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest pathproblemsame input as Dijkstra (exept no start node)add nodes in one by one, and ompute shortestpaths as you add in a nodeshortest path is either the sameor hanges to inlude the new node

Communications Network Design: lecture 07 – p.3/44

Floyd-Warshall

Let D(k)
i j denote the shortest path length from node i tonode j using intermediate nodes from 1 to k only.Initialise: D(0)

i j = di j ∀ i, j ∈ N

V (0) = [0], an |N|× |N| zero matrix.Step: for k = 1,2, . . .n, ompute new distane estimates

D(k)
i j =min{D(k−1)

i j ,D(k−1)
ik +D(k−1)

k j } ∀ i 6= jCompute the predeessor nodesIf D(k)
i j < D(k−1)

i j put V (k)
i j = k;otherwise, V (k)

i j = V (k−1)
i j

Communications Network Design: lecture 07 – p.4/44

Floyd-WarshallThe initialisation step gives the shortest pathlengths subjet to no intermediate nodesFor a given k, D(k−1)
i j gives the shortest path from ito j using only nodes 1 through k−1 as possibleintermediate nodes.On allowing node k as an intermediate node, either kIS on the shortest path, or it isn't.it isn't: keep the same distane, and path

D(k)
i j = D(k−1)

i j and V (k)
i j = V (k−1)

i jit is: the new path must be made of twoshortest paths, joined by node k, i.e. i−k and k−j

D(k)
i j = D(k−1)

ik +D(k−1)
k j

V (k)
i j shows where the join ourred

Communications Network Design: lecture 07 – p.5/44

Floyd-Warshall

The 0's in V (n) determine the adjaenies (links) inthe �nal network.

V (n)
i j indiates that we never found a shorterpath than di j along the diret path.hene i and j are adjaent in the SPF treeThe other terms in V (n) show the predeessor nodesfor eah end-to-end path.onstrut paths, by onatenating predeessornodes

Communications Network Design: lecture 07 – p.6/44

Floyd-Warshall example
3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.7/44

Floyd-Warshall example

Initially, we put diret links into the matrix D
D(0)

i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (0) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1
1

2 4

3 5

Communications Network Design: lecture 07 – p.8/44

Floyd-Warshall example

k = 1: inlude node 1 on existing diret paths (so anypath already ontaining node 1 e.g. top line and �rstolumn of D, an be ignored). Here, nothing hanges.

D(1)
i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (1) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.9/44

Floyd-Warshall example

k = 2: try inluding node 2 on existing paths (so any pathalready ontaining node 2 e.g. line 2 and seond olumnof D, an be ignored).

D(2)
i j =

1 2 3 4 5

1 0 6 3 10 7
2 0 2 4 1
3 0 1 3
4 0 5
5 0

V (2) =

1 2 3 4 5

1 0 0 0 2 2
2 0 0 0 0
3 0 0 2
4 0 0
5 0

3

6

4

6

2 5

1

1

10

7
3

1

4

3 5

2

Communications Network Design: lecture 07 – p.10/44

Floyd-Warshall example

k = 3: try inluding node 3 on existing paths (so any pathalready ontaining node 3 e.g. line 3 and third olumn of
D, an be ignored).

D(3)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (3) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1
5

4

1

4

5

2

3

E.G. The old path joining 4-5 was a diret link withdistane D(2)
45 = 5. But when we are allowed to inludenode 3, we get an alternative D(2)

43 +D(2)
35 = 4, whih isbetter, so we set D(3)

45 = 4, and V (3)
45 = 3.

Communications Network Design: lecture 07 – p.11/44

Floyd-Warshall example

k = 4: try inluding node 4 on existing paths:No hanges.

D(4)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (4) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1

2

3 5

1

4

Communications Network Design: lecture 07 – p.12/44

Floyd-Warshall example

k = 5: try inluding node 5 on existing paths. The entries
D(5)

i j give the length of the shortest path from eah node
i to eah other node j.
D(5)

i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (5) =

1 2 3 4 5

1 0 3 0 3 3

2 0 0 3 0

3 0 0 2
4 0 3
5 0Use the boxed zero entries in the �nal V to determinelinks: (1,3), (2,3), (2,5), (3,4).

Communications Network Design: lecture 07 – p.13/44

Floyd-Warshall shortest paths

3
2

1

1
1

3

2 4

5

Communications Network Design: lecture 07 – p.14/44

Floyd-Warshall omplexity

In alulating D(k)
i j at eah step, we need to omparetwo possibilities for eah of |N|(|N|−1)

2
pairs ofnodes.the algorithm has |N| stepstotal omputational omplexity is O(|N|3).This of ourse is the same as repeating simpleversion of Dijkstra's algorithm |N| times (for eahof |N| soures)

Communications Network Design: lecture 07 – p.15/44

Alternative algorithms

Dijkstra and FW assume non-negative weightsnot a problem for network appliationsfor more general appliations, use Bellman-Fordan be used on graphs with negative edgeweightsas long as the graph ontains no negative ylereahable from the soure nodeJohnson's algorithm solves all pairs shortest paths,may be faster than Floyd-Warshall on sparsegraphs.
Communications Network Design: lecture 07 – p.16/44

Routing implementationmust obtain onsistent results between routersto avoid route loops, or dead-endsmust adapt to hanging networkroute around link or node failuresmust use a distributed algorithman algorithm whih enables a ommon objetive of two ormore peer proesses to be performed jointly by theombination of proessing and exhanging information.The distributed algorithm is broken down into a set of loalalgorithms, one of whih is performed by eah peer proess.Eah loal proess arries out various operations on theavailable data, and at various points in the algorithm, itsends/reeives data to/from other peer proesses.

Communications Network Design: lecture 07 – p.17/44

SPF implementation

Implementation is performed by a routing protoolrouting protool performs SPF alulation�rst needs to �nd out the topology, and weightseah router �oods its available topology informationto all other routerstakes the form of LSAsLink State Announementsa router sends LSA desribing its links toadjaent routers
ld LSA inludes link weightneighbours forward (non-dupliate) LSAs totheir neighbourshene this is alled a link-state routing protool

Communications Network Design: lecture 07 – p.18/44

SPF implementation

one a router has seen all LSAit knows the omplete topologyit an perform Dijkstra to ompute shortestpaths to all other routersnote that eah router only needs to performDijkstra oneit only needs to know paths from itself, to theother routers.hene O(|N|2) for simple implementation

O(|N|3) workload is distributed over |N| routers

Communications Network Design: lecture 07 – p.19/44

SPF routing implementations

ommon implementationsOSPF [1℄Open Shortest Path Firstseveral RFCs needed to see all possibilitiesIS-IS [2℄Intermediate System-Intermediate Systemseveral RFCs needed to see all possibilitiessome amusement: RFC 4041, �Requirements forMorality Setions in Routing Area Drafts�

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txtIt has often been the ase that morality has not been given properonsideration in the design and spei�ation of protools produed withinthe Routing Area. This has led to a deline in the moral values within theInternet and attempts to retro�t a suitable moral ode to implementedand deployed protools has been shown to be sub-optimal...

Communications Network Design: lecture 07 – p.20/44

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

OSPFsoft stateperiodially refresh LSA informationalso exhange hello messages (betweenneighbouring routers) to test link statesin ase a failure happens, and isn't detetednot routedLSAs are just sent in IP paketslike everything elsetransmitted over IP (protool 89)not over TCP, so not reliable transportbut you an't route, until you have routeshene forwarding of LSAs is limited to adjaentrouters
Communications Network Design: lecture 07 – p.21/44

Saling of OSPF

as noted earlier, if |N| is too large, omputing SPFtakes too long, and we run into problemshow an you build large (|N| ∼ 1000) networksuse (2 level) hierahyin subnetworks ompute shortest pathsompute the shortest paths between subnetsombine the twonot as simple as it soundsexample OSPF areas
area 0 is the bakbone (1st level)other areas are the subnetworks (2nd level)

Communications Network Design: lecture 07 – p.22/44

Saling of OSPF
area 1

area 2

area 3

area 0
a different AS

Communications Network Design: lecture 07 – p.23/44

Saling of OSPF
area 1

area 2

area 3

border
routers

area 0

internal routers

a different AS

Communications Network Design: lecture 07 – p.23/44

Saling of OSPF
area 1

area 2

area 3

area 0
a different AS

gateway router

backbone routers

Communications Network Design: lecture 07 – p.23/44

Load balaningin some ases there will be two (or more) equaldistane paths from soure to destinationDijkstra and FW only give you one pathsolution is non-uniquemore ef�ient to share load over both paths

10.0.0.0/8

shortest paths

1 2

3

4

5 6

Communications Network Design: lecture 07 – p.24/44

Dijkstra and load balaning

for all destination nodes in graph, you have ashortest pathstart at a partiular destinationreursively desend through neighbours at the rightdistane bakalgorithm exponential in number of paths, but this ishopefully small
Communications Network Design: lecture 07 – p.25/44

Dijkstra and load balaning ex.

shortest paths

all links have unit weight

10.0.0.0/8
1 2

3

4

5 6

7 8

Communications Network Design: lecture 07 – p.26/44

Dijkstra and load balaning ex.

10.0.0.0/8

shortest paths

distance from node 1

0 1

2

2

2 3

3 4

Communications Network Design: lecture 07 – p.26/44

Dijkstra and load balaning ex.

10.0.0.0/8

2+1=3

2+1=3

4+1=3

distance of
node 8

link weight

from node 5, compare neighbours

distance of
node 53+1=3

0 1

2

2

2 3

3 4

Communications Network Design: lecture 07 – p.26/44

Dijkstra and load balaning ex.

10.0.0.0/8

routes (so far)

0 1

2

2

2 3

3 4

Communications Network Design: lecture 07 – p.26/44

Load balaning implementation

method onesplit traf� up by addressesinstead of a simple forwarding tablee.g. at router 2, the next hop router to pre�x10.0.0.0/8 is router 3have two forwarding table entriese.g. forwarding table (at router 2)

destination next hop router10.0.0.0/9 310.1.0.0/9 4

traf� betwen different pre�xes may be uneven

Communications Network Design: lecture 07 – p.27/44

Load balaning implementation

method twoneed multiple paths in forwarding tabledestination next hop router10.0.0.0/8 3 or 4alloate traf� between two next hops randomlyas it arrivesmethod is simpler to administratebetter balane of traf�may reorder paketsmethod two(b)randomize �rst paket of a �owsubsequent pakets of �ow follow same route

Communications Network Design: lecture 07 – p.28/44

Load balaning implementation

method threealloate traf� randomly between two pathsbut randomization is based on a hash of the IPsoure and destination addresseffet is random alloationbut with all pakets between same soure anddestination using the same pathso no reordering within a TCP onnetionhash needs to be randomized at eah node,otherwise multiple splits don't workdifferent seeds for randomization at eahrouter
Communications Network Design: lecture 07 – p.29/44

Load balaning implementation

method 3 without random seeds in hashes
10.0.0.0/8

no traffic

traffic flows

h(i)=1

h(i)=1

h() is the hash
 1 = interface 1
 2 = interface 2

1 2

3

4

5

6

7

8

9

Communications Network Design: lecture 07 – p.30/44

Link weights

What should be the link weights αe?real, physial distane?delay of pakets along link?hop ount (e.g. αe = 1)?some arbitrary number?Ciso defaultinverse apaity weights αe = A/rethe higher apaity links are nominally �shorter�enourages traf� to use higher apaity linksit an lead to weird routing

Communications Network Design: lecture 07 – p.31/44

Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

r =10e

r =1e

r =10e

r =100e

may think don't need link between Ballarat andBordertown, beause it has no traf�but its just beause routing is taking a longer pathdiret path: D = we = 100/re = 100indiret path: D = 10+10+1 = 21inverse apaity is often the wrong hoie

Communications Network Design: lecture 07 – p.32/44

Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

w =100 e

w =10 e
w =10 e

w =1 e

may think don't need link between Ballarat andBordertown, beause it has no traf�but its just beause routing is taking a longer pathdiret path: D = we = 100/re = 100indiret path: D = 10+10+1 = 21inverse apaity is often the wrong hoie

Communications Network Design: lecture 07 – p.32/44

Link weightsorret hoie depends on objetivesommon ases our when minimizing delays:if propagation delay is dominantminimize physial path distaneweight = link distane, e.g. αe = deif proessing and transmission time dominateminimize the hop ount, e.g. αe = 1if queueing auses most delays, need to minimizeloads on linksearly ARPANET had load-sensitive routingmeasured paket delays along links (to get αe)sent paket along shortest (delay) pathan also write link weight hoie as an optimizationproblem (alled traf� engineering)

Communications Network Design: lecture 07 – p.33/44

Inremental Dijkstra

As noted above, Dijkstra doesn't sale as well as wemight like.network of 1000 nodes need some kind of hierahyalternatively, note that most of the time thenetwork doesn't hangewhen it does hange, it is usually only a loalhange in a few linksperhaps we don't have to reompute everythingfrom srath?inremental Dijkstra algorithmlatest implementations use inremental Dijkstra.

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

Communications Network Design: lecture 07 – p.34/44

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

GeneralizationWe foused here on IP routingbut routing is needed in most ommuniationsnetworksShortest paths used in many areas � not justommuniations networksthere are many other types of networksoften want shortest paths on thesee.g. for �nding lose linkages in soial networksnot always obvious what's a networkDijkstra used in image proessingpixels form a grid, whih is a networkDijkstra is often a omponent of another algorithm

Communications Network Design: lecture 07 – p.35/44

Link state vs Distane VetorWe saw OSPF was a link-state routing protool�oods topology (link states), and omputes SPFsolves shortest path problemalternative is alled distane-vetor protoolexamples: RIP, IGRP, ...originally also aimed to solve shortest pathsbut nodes don't need to know ompletetopologyhybrids exist, e.g. EIGRP

Communications Network Design: lecture 07 – p.36/44

Distane VetorMake a list of destinations you an reah and thedistane to these destinations.Store in routing tableShare this list with your neighboursAdd to routing table new information gained fromadjaent routers about the destinations they anreahremember to inrement their distanekeep the soure as the next hopIf two paths to the same destination exists, keepthe shortest distane path.Repeat periodially (in RIP every 30 seonds).

Communications Network Design: lecture 07 – p.37/44

Distane Vetor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinityinfinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 no route

Communications Network Design: lecture 07 – p.38/44

Distane Vetor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0
2
R1

Communications Network Design: lecture 07 – p.38/44

Distane Vetor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance infinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

R2
3

Communications Network Design: lecture 07 – p.38/44

Distane Vetor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

R2
3

R3
4

Communications Network Design: lecture 07 – p.38/44

Distane Vetor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0

R2
3

R1
2

R2
3

R3
4

Communications Network Design: lecture 07 – p.38/44

Sink treesResults of algorithm must be a sink tree�sink� is destinationget a tree leading to the destinationmust be a tree: shortest path an only be omposedof shortest paths
destination

sources
1

3

4

5

6
7

8

9

Communications Network Design: lecture 07 – p.39/44

Sink treesResults of algorithm must be a sink tree�sink� is destinationget a tree leading to the destinationmust be a tree: shortest path an only be omposedof shortest paths
destination

sources
1

3

4

5

6
7

8

9

Communications Network Design: lecture 07 – p.39/44

Distane Vetoralso alled Distributed Bellman-Fordproved onverges for shortest path routingordering and timing of updates doesn't matterhief advantageshistory (RIP invented way bak in ARPANET)simpliityexample of Ciso RIP on�guration

router rip
network 10.1.0.0problemsonvergene time (minutes)saling (of RIP)ount to in�nity

Communications Network Design: lecture 07 – p.40/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
3

no route
infinitylink between R1 and R2 failsR5 does not see the failure!

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
3

R5
4route update from R5R5 does not know that its route is now invalidR2 does not know that R5's route is invalida route loop is reated

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R5
4

R2
5R2 does not know R5's route is invalidso re-advertisesR5 sees this as its only valid route

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
5

R5
6R5 re-advertises route

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R5
6 7

R2

R2 re-advertises route
Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
7

R5
8this proess ontinues inde�nitelymetris slowly ount to in�nity

Communications Network Design: lecture 07 – p.41/44

RIPRouting Information Protool (RIP)RIP was �rst developed in early ARPANETRIPv1, de�ned in RFC 1058 [3℄ (1988)RIPv2, de�ned in RFC 1723 [4℄ (1994)introdued lassless routing (CIDR)RIPng, de�ned in RFC 2080 (IPv6)MDS authentiation RFC 2082.implementationuses UDP over IP, on port 520 to arry its datasee RFCs for paket formatsrouter transmits full updates every 30 seondsby default
Communications Network Design: lecture 07 – p.42/44

RIPount-to-in�nity mitigated usingsplit horizon with poison reversetriggered updatesount-to-in�nity stoppedmaximum distane = 15in�nity = 16problemsonvergene is slowount to 16 an still be slowgenerates lots of traf�maximum length path is 16

Communications Network Design: lecture 07 – p.43/44

References[1℄ J. Moy, �OSPF Version 2.� IETF, Request for Comments: 2328, 1998.[2℄ D. Oran, �OSI IS-IS Intra-domain Routing Protool.� IETF, Request for Comments:1142, 1990.[3℄ C. Hedrik, �Routing Information Protool.� IETF, Request for Comments: 1058,1988.[4℄ G. Malkin, �RIP Version 2.� IETF, Request for Comments: 1723, 1994.

Communications Network Design: lecture 07 – p.44/44

	
	Floyd-Warshall
	Floyd-Warshall
	Floyd-Warshall
	Floyd-Warshall
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall shortest paths
	Floyd-Warshall complexity
	Alternative algorithms
	Routing implementation
	SPF implementation
	SPF implementation
	SPF routing implementations
	OSPF
	Scaling of OSPF
	Scaling of OSPF
	Load balancing
	Dijkstra and load balancing
	Dijkstra and load balancing ex.
	Load balancing implementation
	Load balancing implementation
	Load balancing implementation
	Load balancing implementation
	Link weights
	Link weights
	Link weights
	Incremental Dijkstra
	Generalization
	Link state vs Distance Vector
	Distance Vector
	Distance Vector example
	Sink trees
	Distance Vector
	Count to infinity
	RIP
	RIP
	

