Communications Network Design lecture 08

Matthew Roughan <matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

April 1, 2009

Communications Network Design: lecture 08 – p.1/51

Routing (continued)

The simple routing considered so far has fixed distances, but if we consider a more queueing view of networks, then packets are delayed when a link is heavily loaded, and so this increases delays. Minimum delay routing forms a non-linear, **convex** optimization problem with **separable** costs. We present two simple gradient descent methods for solution of such problems including the Frank Wolfe method.

Recap link-state routing

- topology is flooded
 - \blacksquare including the link weights α
- calculate shortest paths
 - assumption of linear costs, based on weights
 - not automatically based on congestion
 - capacity constraints are ignored in the optimization
 - so too much traffic can be routed along any one route
- note that the link weights are arbitrary
 - how can we use this to avoid congestion?
- recap notation in lecture 6

Link loads

Once we know shortest paths, we can compute link loads

Costs are linear in the costs/distances, and loads

$$C(\mathbf{f}) = \sum_{e \in E} \alpha_e f_e = \sum_{(p,q) \in K} \hat{l}_{pq} t_{pq}$$

either link or path costs and loads can be used.

Communications Network Design: lecture 08 – p.4/51

Example cost calculation

OD pair	load t_{pq}	path	path length	$\hat{l}_{pq}t_{pq}$
(1,2)	$t_{12} = 1$	1 - 3 - 2	$\hat{l}_{12} = 5$	5
(1, 3)	$t_{13} = 2$	1 - 3	$\hat{l}_{13} = 3$	6
(1, 4)	$t_{14} = 3$	1 - 3 - 4	$\hat{l}_{14} = 4$	12
(1, 5)	$t_{15} = 4$	1 - 3 - 2 - 5	$\hat{l}_{15} = 6$	24
(2,3)	$t_{23} = 2$	3 - 2	$\hat{l}_{23} = 2$	4
(2, 4)	$t_{24} = 3$	2 - 3 - 4	$\hat{l}_{24} = 3$	9
(2,5)	$t_{25} = 3$	2 - 5	$\hat{l}_{25} = 1$	3
(3, 4)	$t_{34} = 2$	3 - 4	$\hat{l}_{34} = 1$	2
(3,5)	$t_{35} = 1$	3 - 2 - 5	$\hat{l}_{35} = 3$	3
(4, 5)	$t_{45} = 2$	4 - 3 - 2 - 5	$\hat{l}_{45} = 4$	8
			total cost	76

Communications Network Design: lecture 08 – p.5/51

Example loads on links

		links			
OD pair	t_{pq}	(1,3)	(2,3)	(2, 4)	(3,5)
(1, 2)	$t_{12} = 1$	1	1		
(1,3)	$t_{13} = 2$	2			
(1, 4)	$t_{14} = 3$	3			3
(1,5)	$t_{15} = 4$	4	4	4	
(2,3)	$t_{23} = 2$		2		
(2, 4)	$t_{24} = 3$		3		
(2,5)	$t_{25} = 3$			3	
(3, 4)	$t_{34} = 2$				2
(3,5)	$t_{35} = 1$		1	1	
(4,5)	$t_{45} = 2$		2	2	2
	total load	10	13	10	10

Communications Network Design: lecture 08 – p.6/51

Alternative cost calculation

This also tells us the link loads, from which we could estimate congestion.

Link loads

Why should this result in low cost network?

- link weights relate to link cost
- higher weight results in less traffic
- hence less cost
- relationship between link loads and shortest paths
 - shorter paths result in fewer hops
 - so less resources used
 - less cost

But is a linear model the right approach?

Non-linear cost functions

Non-linear functions could be anything: we will restrict ourselves to

- continuous functions
 - no breaks in the function
- differentiable
 - no corners or edges in the function
 - assume its differentiable enough
 - can define gradient and Hessian
- convex functions
 - chords lie above the function

Differentiable functions

The gradient $\nabla C(\mathbf{f}) = \left(\frac{\partial C(\mathbf{f})}{\partial f_e} : e \in E\right)$ is the vector of first partial derivatives of C.

For example

$$C(\mathbf{f}) = \sum_{e \in E} \frac{f_e}{r_e - f_e} = \sum_{e \in E} \left[\frac{r_e}{r_e - f_e} - 1 \right]$$

has gradient

$$\frac{\partial C(\mathbf{f})}{\partial f_{e}} = \frac{r_{e}}{(r_{e} - f_{e})^{2}} \quad \text{and} \quad \nabla C(\mathbf{f}) = \begin{bmatrix} \frac{r_{e_{1}}}{(r_{e_{1}} - f_{e_{1}})^{2}} \\ \frac{r_{e_{2}}}{(r_{e_{2}} - f_{e_{2}})^{2}} \\ \vdots \\ \frac{r_{e_{m}}}{(r_{e_{m}} - f_{e_{m}})^{2}} \end{bmatrix}$$

Communications Network Design: lecture 08 – p.10/51

Differentiable functions

The Hessian $\nabla^2 C(\mathbf{f}) = \left(\frac{\partial^2 C(\mathbf{f})}{\partial f_e \partial f_g} : e, g \in E\right)$ is the square matrix of all second partial derivatives of C.

Example above has

Note that in this example, the Hessian is a diagonal matrix. This will always be the case when C is separable in f_e . i.e. $C(\mathbf{f}) = \sum_{e \in E} c_e(f_e)$.

Linear cost example

$$C(\mathbf{f}) = \sum_{e \in E} \alpha_e f_e$$

$$\nabla C(\mathbf{f}) = (\alpha_1, \alpha_2, \dots \alpha_m)^T$$

 $\nabla^2 C(\mathbf{f}) = [0]$

a matrix of 0's, since $C(\mathbf{f})$ is linear

Convex sets

Definition: A set Ω is a convex set in \mathbb{R}^m if for all $\mathbf{x}, \mathbf{y} \in \Omega$, $t\mathbf{x} + (1-t)\mathbf{y} \in \Omega$ for all $t \in [0,1]$.

i.e. chords between points in the set lie inside the set.

Communications Network Design: lecture 08 – p.13/51

Convex functions

Definition: Let Ω be a convex set in \mathbb{R}^m . A function $f: \Omega \to \mathbb{R}$ is a convex function if for all $\lambda \in (0, 1)$,

 $C(\mathbf{f} + \lambda \Delta \mathbf{f}) \leq C(\mathbf{f}) + \lambda (C(\mathbf{f} + \Delta \mathbf{f}) - C(\mathbf{f})),$

for all $\mathbf{f}, \mathbf{f} + \Delta \mathbf{f} \in \Omega$. In 2-D, one can picture this as the chord joining (f, C(f)) and $(f + \Delta f, C(f + \Delta f))$ sitting above the curve y = C(f).

Communications Network Design: lecture 08 – p.14/51

Convex functions

convex

Communications Network Design: lecture 08 – p.15/51

Convex differentiable functions

Theorem: Let Ω be a convex set in \mathbb{R}^m . A differentiable function $C: \Omega \to R$ is convex iff

$$C(\mathbf{f} + \Delta \mathbf{f}) \ge C(\mathbf{f}) + \nabla C(\mathbf{f})^T \Delta \mathbf{f}.$$

Proof: Omitted. Proof uses a Taylor Series approach.

Thus a differentiable function is convex iff $C(\mathbf{f} + \Delta \mathbf{f}) - C(\mathbf{f}) \ge \nabla C(\mathbf{f})^T \Delta \mathbf{f}.$

Says that tangents will lie below the convex function.

Convex differentiable functions

Theorem: A differentiable function C is convex on the convex set Ω iff the Hessian $\nabla^2 C(\mathbf{f})$ is positive semidefinite on Ω i.e. C is convex iff $\mathbf{z}^T \nabla^2 C(\mathbf{f}) \mathbf{z} \ge 0$ for all vectors $\mathbf{z} \in \Omega$

i.e. C is convex iff $\Delta \mathbf{f}^T \nabla^2 C(\mathbf{f}) \Delta \mathbf{f} \ge 0$ for all $\Delta \mathbf{f} \in \Omega$.

Example

A separable, differentiable function $C(\mathbf{f}) = \sum_{e} c_{e}(f_{e})$ is convex iff $c_{e}''(f_{e}) = \frac{\partial^{2}c_{e}(f_{e})}{\partial f_{e}^{2}} \ge 0$ for all $e \in E$. Explanation: To be positive semi-definite we must have $\mathbf{z}^{T}\nabla^{2}C(\mathbf{f})\mathbf{z} = \sum_{e} \frac{\partial^{2}c_{e}(f_{e})}{\partial f_{e}^{2}}z_{e}^{2} \ge 0$ for all \mathbf{z} . (\Rightarrow) clearly if $c_{e}''(f_{e}) \ge 0$ then the sum above is ≥ 0 (\Leftarrow) Also, recall that in this example,

$$\nabla^2 C(\mathbf{f}) = [\operatorname{diag}\{c_{e_1}''(f_{e_1}), \dots, c_{e_m}''(f_{e_m})\}]$$

If $\mathbf{z} = (0....0, 1, 0, ...0)^T$ with the '1' in the *i*-th spot, then $\mathbf{z}^T \nabla^2 C(\mathbf{f}) \mathbf{z} = c_{e_i}''(f_{e_i})$ and hence we must have c_{e_i} convex for all *i*

Simple queueing model

Imagine we wish to minimize delays caused by queueing

- simple queueing model M/M/1 queue
- average queueing delay on a link is given by

$$c(f_e; r_e) = \frac{f_e}{r_e - f_e}$$

where f_e is the link load, and r_e is the capacity Assume that the interactions between queues are weak Kleinrock's Independence Approximation

$$C(\mathbf{f};\mathbf{r}) = \sum_{e \in E} c(f_e; r_e) = \sum_{e \in E} \frac{f_e}{r_e - f_e}$$

Communications Network Design: lecture 08 – p.19/51

Simple queueing model

The function is increasing, convex and differentiable (except at r_e), with an asymptote at r_e

Communications Network Design: lecture 08 – p.20/51

Minima

- convex functions have a unique minimum
- non-convex functions can have non-unique minima, and local minima
- by definition, at the minima $\hat{\mathbf{f}}$ we get

 $C(\hat{\mathbf{f}}) \leq C(\hat{\mathbf{f}} + \Delta \mathbf{f})$

■ if differentiable, for all **feasible** routing changes $\nabla C(\hat{\mathbf{f}})^T \Delta \mathbf{f} \ge 0$

reason lies in Taylor's theorem

$$C(\mathbf{f} + \lambda \Delta \mathbf{f}) = C(\mathbf{f}) + \lambda \nabla C(\mathbf{f})^T \Delta \mathbf{f} + O(\lambda^2)$$

If $\nabla C(\hat{\mathbf{f}})^T \Delta \mathbf{f} < 0$, for small $\lambda > 0$ then $C(\hat{\mathbf{f}}) > C(\hat{\mathbf{f}} + \lambda \Delta \mathbf{f})$

Feasible routing changes

Feasible change in routing Δx

no path traffic can go negative

$$x_{\mu} + \Delta x_{\mu} \ge 0, \ \forall \mu \in P_{pq}$$

traffic must be conserved

$$\sum_{\mu\in P_{pq}}\Delta x_{\mu}=0, \ \forall [p,q]\in K,$$

note that the change in link loads will be

$$\Delta f_e = \sum_{\mu \in P: e \in \mu} \Delta x_\mu \quad \forall e \in E$$

Separable cost functions

• if we have cost function $C(\mathbf{f})$

$$\begin{aligned} \nabla C(\mathbf{f})^T \Delta \mathbf{f} &= \sum_{e \in E} \frac{\partial C(\mathbf{f})}{\partial f_e} . \Delta f_e \\ &= \sum_{e \in E} \frac{\partial C(\mathbf{f})}{\partial f_e} . \left(\sum_{\mu \in P: e \in \mu} \Delta x_\mu \right) \\ &= \sum_{\mu \in P} \left(\sum_{e \in \mu} \frac{\partial C(\mathbf{f})}{\partial f_e} \right) . \Delta x_\mu \\ &= \sum_{\mu \in P} l_\mu(\mathbf{f}) \Delta x_\mu \end{aligned}$$

\$\sum_{e \in \mu} \frac{\partial C(f)}{\partial f_e} = l_\mu(f)\$ is called path length (again)
 note that path length now depends on the loads f

Shortest path with non-linear costs

 $l_{\mu}(\mathbf{f})$ is called the length of path μ , and

$$\nabla C(\mathbf{f})^T \Delta \mathbf{f} = \sum_{\mu \in P} l_{\mu}(\mathbf{f}) \Delta x_{\mu}.$$

For a load f and any O-D pair $[p,q] \in K$, let

$$\hat{l}_{pq}(\mathbf{f}) = \min\{l_{\mu}(\mathbf{f}) : \mu \in P_{pq}\}$$

As before, we call a path $\mu = \hat{\mu} \in P_{pq}$ for which $l_{\hat{\mu}}(\mathbf{f}) = \hat{l}_{pq}(\mathbf{f})$ a shortest path for [p,q].

Note that this is consistent with the previous example where $\frac{\partial C}{\partial f_e} = \alpha_e$.

Shortest path with non-linear costs

Theorem: A minimum cost routing implies a shortest path routing (though the reverse is not necessarily true).

Proof: Suppose the routing is NOT a shortest path routing. In particular, assume some traffic for the O-D pair $[p,q] \in K$ is assigned to a path $\mu' \in P_{pq}$ which is NOT of shortest length. That is,

$$l_{\mu'}(\mathbf{f}) > \hat{l}_{pq}(\mathbf{f})$$
 and $x_{\mu'} > 0.$

Let $\hat{\mu} \in P_{pq}$ be a shortest path for [p,q]. So $l_{\hat{\mu}}(\mathbf{f}) = \hat{l}_{pq}(\mathbf{f})$.

Shortest path with non-linear costs

Proof (continued): Reroute as follows:

where $0 < \delta \le x_{\mu'}$. Then note $l_{\mu'}(\mathbf{f}) > l_{\hat{\mu}}(\mathbf{f})$ $\nabla C(\mathbf{f})^T \Delta \mathbf{f} = \sum_{\mu \in P} l_{\mu}(\mathbf{f}) \Delta x_{\mu}$ $= -l_{\mu'}(\mathbf{f}) \delta + l_{\hat{\mu}}(\mathbf{f}) \delta$ $= (-l_{\mu'}(\mathbf{f}) + l_{\hat{\mu}}(\mathbf{f})) \delta$ (something -ve). (something +ve) < 0.

Thus if the routing is not a shortest path routing, $\nabla C(\mathbf{f})^T \Delta \mathbf{f} < 0$ which means it cannot be minimum cost.

Shortest path with convex costs

Theorem: If $C(\mathbf{f})$ is convex and differentiable, then \mathbf{x} is a minimum cost routing **iff** \mathbf{x} is a shortest path routing.

Proof: \Rightarrow from previous theorem \Leftarrow from properties of convex functions:

- assume we have shortest path routing, e.g. $x_{\mu} = 0, \forall \mu \in P_{pq}$ not a shortest path
- for a routing change Δx , then $\Delta x_{\mu} \ge 0, \forall \mu \in P_{pq}$ which are **not** shortest paths, i.e.

 $\Delta x_{\mu} \geq 0$ when $l_{\mu}(\mathbf{f}) > \hat{l}_{pq}(\mathbf{f})$

Also, for all $\mu \in P_{pq}$ which are shortest paths, $\Delta x_{\mu} \ge -x_{\mu}$ when $l_{\mu}(\mathbf{f}) = \hat{l}_{pq}(\mathbf{f})$.

Shortest path with convex costs

Proof: (cont)
$$\Rightarrow (l_{\mu}(\mathbf{f}) - \hat{l}_{pq}(\mathbf{f}))\Delta x_{\mu} \ge 0, \forall [p,q], \mu \in P_{pq}$$

- either first term > 0 and second ≥ 0
- or first term =0, so second term is irrelevant

So $l_{\mu}(\mathbf{f})\Delta x_{\mu} \geq \hat{l}_{pq}(\mathbf{f})\Delta x_{\mu}$. Therefore $\nabla C(\mathbf{f})^T \Delta \mathbf{f} = \sum l_{\mu}(\mathbf{f}) \Delta x_{\mu}$ u∈P $= \sum l_{\mu}(\mathbf{f})\Delta x_{\mu}$ $[p,q] \in K \mu \in P_{pq}$ $\geq \sum \sum \hat{l}_{pq}(\mathbf{f})\Delta x_{\mu}$ $[p,q] \in K \mu \in P_{pq}$ $= \sum_{[p,q]\in K} \hat{l}_{pq}(\mathbf{f}) \left(\sum_{\mu \in P_{nq}} \Delta x_{\mu} \right) = 0, \quad \text{since } \sum_{\mu \in P_{nq}} \Delta x_{\mu} = 0.$

Shortest path with convex costs

Proof: (cont) Thus $\nabla C(\mathbf{f})^T \Delta \mathbf{f} \ge 0$ for all feasible changes in load $\Delta \mathbf{f}$.

Now one of the properties of a convex differentiable function $C(\mathbf{f})$ is that

$$C(\mathbf{f} + \Delta \mathbf{f}) - C(\mathbf{f}) \ge \nabla C(\mathbf{f})^T \Delta \mathbf{f}.$$

If $C(\hat{\mathbf{f}})^T \Delta \mathbf{f} \ge 0$ then

$$C(\mathbf{\hat{f}} + \Delta \mathbf{f}) - C(\mathbf{\hat{f}}) \geq 0$$

or alternatively $C(\hat{\mathbf{f}} + \Delta \mathbf{f}) \ge C(\hat{\mathbf{f}})$, which means that $C(\hat{\mathbf{f}})$ takes its minimum value at $\hat{\mathbf{f}}$. \Box

Descent Methods

Definition: A vector $\mathbf{u} \in R^{|P|}$ is said to be a **descent direction** for the routing \mathbf{x} , with induced load \mathbf{f} , if

(i)
$$u_{\mu} < 0 \Rightarrow x_{\mu} > 0$$
.

we can only subtract traffic from a path μ if there is some traffic on it in the first place!

(ii)
$$\sum_{\mu \in P_{pq}} u_{\mu} = 0 \quad \forall \text{ O-D pairs } (p,q) \in K$$

any traffic we take from one path μ must be added to the traffic on some other path(s)

(iii)
$$\sum_{\mu\in P} l_{\mu}(\mathbf{f})u_{\mu} < 0$$

it is a descent vector, i.e., the change in C by going a small distance in this direction is negative.

Descent Methods: notes

The change in C for a small change λu will be

$$C(\mathbf{f} + \lambda \Delta \mathbf{f}) - C(\mathbf{f}) = \lambda \sum_{\mu \in P} l_{\mu}(\mathbf{f}) u_{\mu} + O(\lambda^2)$$

and we require that $\sum_{\mu\in P}l_{\mu}(\mathbf{f})u_{\mu}<0$

The change in routing will be Δx = λu, for some small λ > 0. λ must be chosen with two things in mind:
(a) x + Δx, the new routing, must still be feasible.
(b) we only go as far in the direction u as we need to, to get maximum decrease in C(f), in that direction.

Descent Methods

Broadly, the method consists of the following steps:

- 1. Choose a feasible descent direction $\mathbf{u} \in R^{|P|}$.
- 2. Given that the new routing will be $x+\lambda u,$ choose a step length $\lambda>0$ so that

(i)
$$\mathbf{x} + \lambda \mathbf{u}$$
 is feasible (i.e. ≥ 0)

- (ii) $\mathbf{x} + \lambda \mathbf{u}$ minimises the cost of the induced load.
- 3. Change the routing and the induced load
- 4. Unless you have a minimum, goto step 1.
 - (i) For convex costs, when we have a shortest path routing, we have reached the minima.

Calculating the new cost

Take the change in routing to be $\Delta \mathbf{x} = \lambda \mathbf{u}$

$$\Delta f_e = \sum_{\mu:e\in\mu} \Delta x_{\mu}$$
$$= \lambda \sum_{\mu:e\in\mu} u_{\mu}$$
$$= \lambda v_e$$

where we define $v_e = \sum_{\mu:e\in\mu} u_\mu$ and $\mathbf{v} = (v_e:e\in E)\in R^m$.

More succinctly $\Delta \mathbf{f} = \lambda \mathbf{v}$ and the new cost is $C(\mathbf{f} + \lambda \mathbf{v})$.

Communications Network Design: lecture 08 – p.33/51

Descent Method 1

Simple exchange method:

The transfer some traffic from a longer path $\mu^* \in P_{pq}$ to a shortest path $\hat{\mu} \in P_{pq}$, i.e. $l_{\mu^*}(\mathbf{f}) > l_{\hat{\mu}}(\mathbf{f}) = l_{\hat{\mu}}(\mathbf{f})$

descent direction u has components

$$egin{array}{ll} u_{\mu^*}&=-1& ext{transfer off }\mu^*\ u_{\hat{\mu}}&=+1& ext{transfer onto }\hat{\mu^*}\ u_{\mu}&=0&orall& ext{other }\mu\in P \end{array}$$

Note that with u as above

$$\sum_{\mu} l_{\mu} u_{\mu} = +l_{\hat{\mu}}(\mathbf{f}) - l_{\mu^*}(\mathbf{f}) < 0$$

and therefore u is a descent direction.

Descent Method 1

Simple exchange method:

to maintain feasibility we require

 $0 \leq \lambda \leq x_{\mu^*}$

the vector v has components

$$v_e = \left\{ egin{array}{ll} 1 & ext{if } e \in \hat{\mu} ext{ and } e
ot \in \mu^* \ -1 & ext{if } e \in \mu^* ext{ and } e
ot \notin \hat{\mu} \ 0 & ext{otherwise} \end{array}
ight.$$

• We wish to determine $\lambda^* \in [0, x_{\mu^*}]$ which minimises $C(\mathbf{f} + \lambda \mathbf{v})$

An example network

Capacities r_e

re

Traffic demands t_{pq}

Communications Network Design: lecture 08 – p.36/51

Assume direct routing of the traffic

Total cost $C(\mathbf{f}) = \sum_{e} c_e(f_e) = 3 \cdot \frac{1}{2-1} + 3 \cdot \frac{1}{4-1} = 4$

Communications Network Design: lecture 08 – p.37/51

shortest paths are as follow:

OD pair	direct path	shortest path
1,2	1 - 2	1 - 4 - 2
1,3	1 - 3	1 - 4 - 3
1, 4	1 - 4	1 - 4
2, 3	2 - 3	2 - 4 - 3
2,4	2 - 4	2 - 4
3,4	3 - 4	3 - 4

not all traffic is routed on the shortest path!

For example: O-D pair [1,3], the shortest route would be 1-4-3 (length of ⁸/₉), but at present the traffic is routed on 1-3 (length of 2)

Communications Network Design: lecture 08 – p.38/51

We transfer some load from a direct path, to a shortest path e.g. transfer some flow from path $\mu = 1-2$ to $\mu = 1-4-2$.

In this problem, there are 30 paths in this network. So x and u have 30 entries. Listing all paths lexicographically, e.g. paths

$$1-2, 1-2-3, 1-2-4, 1-2-3-4, 1-2-4-3, 1-3, 1-3-2, 1-3-4, 1-3-2-4, 1-3-4-2, 1-4, 1-4-2, 1-4-3, 1-4-2-3, 1-4-3-2, ...$$

 $\mathbf{x}^{\scriptscriptstyle T} = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)$ and

We need to calculate v_e given the above descent direction.

- $u_{1-2} = -1$ which says
 - we reduce the traffic on path 1-2
 - \blacksquare and hence on link 1-2
 - so this gives us $v_{1-2} = -1$
- $u_{1-4-2} = 1$ which says
 - we increase the traffic on path 1-4-2
 - and hence on links 1-4 and 4-2
 - **so this gives us** $v_{1-4} = v_{4-2} = 1$

Net effect is

$$\mathbf{v} = (v_{1-2}, v_{1-3}, v_{1-4}, v_{2-3}, v_{2-4}, v_{3-4})^T = (-1, 0, 1, 0, 1, 0)^T$$

We move $\lambda \in [0,1]$ in the descent direction (above), so recalculating the costs we get

$$C(\mathbf{f} + \lambda \mathbf{v}) = \sum_{e} c_e(f_e + \lambda v_e)$$

$$= \sum_{e} \frac{f_e + \lambda v_e}{r_e - (f_e + \lambda v_e)}$$

$$= c + \frac{f_{1-2} - \lambda}{r_{1-2} - (f_{1-2} - \lambda)} + \frac{f_{1-4} + \lambda}{r_{1-4} - (f_{1-4} + \lambda)} + \frac{f_{4-2} + \lambda}{r_{4-2} - (f_{4-2} + \lambda)}$$

$$= c + \frac{1 - \lambda}{2 - 1 + \lambda} + 2\frac{1 + \lambda}{4 - 1 - \lambda}$$

$$\frac{dC}{d\lambda} = 2\left(\frac{-1}{(1 + \lambda)^2} + \frac{4}{(3 - \lambda)^2}\right)$$

Communications Network Design: lecture 08 – p.41/51

$$\frac{dC}{d\lambda} = 2\left(\frac{-1}{(1+\lambda)^2} + \frac{4}{(3-\lambda)^2}\right)$$

which is equal to zero for $\lambda = 1/3$, so this gives us out optimal step size λ . The new "distances" are shown below. Note it is still not a shortest path graph.

Descent Method 2

Frank-Wolfe method:

- we know we are aiming for a shortest path
- why not try to get there in one step
 - given a feasible routing x, find shortest path routing z
 - **•** set $\mathbf{u} = \mathbf{u} \mathbf{x}$, and $\lambda \in [0, 1]$
 - Find λ to minimize the new cost $C(\mathbf{f} + \lambda \mathbf{v})$
 - Continue
- don't really get there in one step, as shortest paths change when load changes
 - but iterations converge
 - proof on following slide

Descent Method 2

Lemma: If z is a shortest path routing wrt $l_{\mu}(\mathbf{f})$ (where f is the load induced by current routing x) then $\mathbf{u} = \mathbf{z} - \mathbf{x}$ is a descent direction.

Proof of Lemma: (recall the definition)

1. if
$$x_{\mu} = 0$$
 then $u_{\mu} = z_{\mu} \ge 0$

2.
$$\sum_{\mu \in P_{pq}} u_{\mu} = \sum_{\mu \in P_{pq}} z_{\mu} - \sum_{\mu \in P_{pq}} x_{\mu} = t_{pq} - t_{pq} = 0$$

3.
$$\sum_{\mu \in P} l_{\mu}(\mathbf{f}) u_{\mu} = \sum_{[[p,q] \in K} \sum_{\mu \in P_{pq}} (l_{\mu}(\mathbf{f}) z_{\mu} - l_{\mu}(\mathbf{f}) x_{\mu}) < 0$$

since z being shortest path routing implies second sum is larger than first sum.

Hence $\mathbf{z} - \mathbf{x}$ is a descent direction. \Box

Methods: Dynamic feedback

ARPANET's earliest methods [1, 2].

- the M/M/1 model is not really a good model for the Internet
 - we don't a priori know the best model
- want a distributed algorithm
- what can we do?
- bright idea
 - measure delays (two different methods)
 - use these in a SPF routing
- problem: oscillation
 - the network and traffic are not static
 - doesn't take much to cause oscillation

Greedy vs Hill Climbing

- We have discussed hill-climbing today
 - actually we described descent methods, but hill-climbing is just the reverse
 - follow the path up (down) a hill (optimization function)
- Greedy algorithms are similar
 - choose the next best step at each point
 - like going up a hill, but
 - only a partial solution at each step until the end
 - Dijkstra is a good example of a greedy algorithm

Traffic Engineering

Modern IGP routing protocols are almost all based on simple SPF algorithms with linear costs, but real costs are non-linear. It works fine most of the time, but when congestion occurs, there is a problem. Traffic engineering is the process of rebalancing traffic loads on a network to avoid congestion.

Now a'days

Modern IGP routing protocols are almost all based on simple linear cost SPF algorithms!

- link costs are static: no dependence on congestion
- mainly used for rerouting in failures
- how can we optimize if the cost function is really non-linear
- optimization becomes choice of the best weights α_e
- NP-hard so need heuristics [3, 4, 5]

Planning horizons

More generally

- real way to optimize network is to change its design (which we consider next)
- planning horizon for network redesign is months
 - ordering and delivery of equipment
 - test and verification of equipment
 - waiting for planned maintenance windows
 - availability of technical staff
 - capital budgeting cycles.
- need a process to allow rebalancing of traffic on shorter time scale: traffic engineering

Traffic Engineering

- Traffic engineering fills the gap
- Planning horizon of hours/days: only need to change router configuration (the link weights)
- Two methods
 - link weight optimization (as above)
 - MPLS: full optimization of all routing using tunnels
- But a lot of traffic engineering is still done in a very ad hoc way.

References

- [1] J. M.McQuillan, G. Falk, and I. Richer, "A review of the development and performance of the ARPANET routing algorithm," IEEE Transactions on Communication, vol. COM-26, pp. 60-74, December 1978.
- [2] J. M.McQuillan, I. Richer, and E. C. Rosen, "A new routing algorithm for the ARPANET," IEEE Transactions on Communication, vol. COM-28, pp. 711-719, May 1980.
- [3] B. Fortz, J. Rexford, and M. Thorup, "Traffic engineering with traditional IP routing protocols," IEEE Communications Magazine, vol. 40, no. 10, pp. 118-124, 2002.
- [4] B. Fortz and M. Thorup, "Optimizing OSPF/IS-IS weights in a changing world," IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 756-767, 2002.
- [5] M. Roughan, M. Thorup, and Y. Zhang, "Performance of estimated traffic matrices in traffic engineering," in ACM SIGMETRICS, (San Diego, CA, USA), pp. 326–327, 2003.