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Routing (
ontinued)

The simple routing 
onsidered so far has �xeddistan
es, but if we 
onsider a more queueing view ofnetworks, then pa
kets are delayed when a link is heavilyloaded, and so this in
reases delays. Minimum delayrouting forms a non-linear, 
onvex optimization problemwith separable 
osts. We present two simple gradientdes
ent methods for solution of su
h problems in
ludingthe Frank Wolfe method.
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Re
ap link-state routing

topology is �oodedin
luding the link weights α
al
ulate shortest pathsassumption of linear 
osts, based on weightsnot automati
ally based on 
ongestion
apa
ity 
onstraints are ignored in theoptimizationso too mu
h traf�
 
an be routed along any oneroutenote that the link weights are arbitraryhow 
an we use this to avoid 
ongestion?re
ap notation in le
ture 6
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Link loadsOn
e we know shortest paths, we 
an 
ompute link loads
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Costs are linear in the 
osts/distan
es, and loads

C(f) = ∑
e∈E

αe fe = ∑
(p,q)∈K

l̂pqtpq

either link or path 
osts and loads 
an be used.
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Example 
ost 
al
ulation

OD pair load tpq path path length l̂pqtpq

(1,2) t12 = 1 1−3−2 l̂12 = 5 5
(1,3) t13 = 2 1−3 l̂13 = 3 6
(1,4) t14 = 3 1−3−4 l̂14 = 4 12
(1,5) t15 = 4 1−3−2−5 l̂15 = 6 24
(2,3) t23 = 2 3−2 l̂23 = 2 4
(2,4) t24 = 3 2−3−4 l̂24 = 3 9
(2,5) t25 = 3 2−5 l̂25 = 1 3
(3,4) t34 = 2 3−4 l̂34 = 1 2
(3,5) t35 = 1 3−2−5 l̂35 = 3 3
(4,5) t45 = 2 4−3−2−5 l̂45 = 4 8total 
ost 76
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Example loads on links
linksOD pair tpq (1,3) (2,3) (2,4) (3,5)

(1,2) t12 = 1 1 1
(1,3) t13 = 2 2
(1,4) t14 = 3 3 3
(1,5) t15 = 4 4 4 4
(2,3) t23 = 2 2
(2,4) t24 = 3 3
(2,5) t25 = 3 3
(3,4) t34 = 2 2
(3,5) t35 = 1 1 1
(4,5) t45 = 2 2 2 2total load 10 13 10 10
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Alternative 
ost 
al
ulation

link αe fe 
ost αe× fe
(1,3) 3 10 30
(2,3) 2 13 26
(2,4) 1 10 10
(3,5) 1 10 10total 76
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This also tells us the link loads, from whi
h we 
ouldestimate 
ongestion.
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Link loadsWhy should this result in low 
ost network?link weights relate to link 
osthigher weight results in less traf�
hen
e less 
ostrelationship between link loads and shortest pathsshorter paths result in fewer hopsso less resour
es usedless 
ostBut is a linear model the right approa
h?
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Non-linear 
ost fun
tionsNon-linear fun
tions 
ould be anything: we will restri
tourselves to
ontinuous fun
tionsno breaks in the fun
tiondifferentiableno 
orners or edges in the fun
tionassume its differentiable enough
an de�ne gradient and Hessian
onvex fun
tions
hords lie above the fun
tion
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Differentiable fun
tions

The gradient ∇C(f) =
(

∂C(f)
∂ fe

: e∈ E
) is the ve
tor of �rstpartial derivatives of C.For example

C(f) = ∑
e∈E

fe
re− fe

= ∑
e∈E

[

re

re− fe
−1

]

has gradient

∂C(f)
∂ fe

=
re

(re− fe)2

and ∇C(f) =













re1
(re1− fe1)2

re2
(re2− fe2)2...

rem
(rem− fem)2












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Differentiable fun
tions

The Hessian ∇2C(f) =
(

∂2C(f)
∂ fe∂ fg

: e,g∈ E
) is the squarematrix of all se
ond partial derivatives of C.Example above has

∇2C(f) =



















2re1
(re1− fe1)3 0 . . . 0

0
2re2

(re2− fe2)3 . . . 0

...
0 0 . . . 2rem

(rem− fem)3


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


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

Note that in this example, the Hessian is a diagonalmatrix. This will always be the 
ase when C is separablein fe. i.e. C(f) = ∑e∈E ce( fe).
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Linear 
ost example

C(f) = ∑
e∈E

αe fe

∇C(f) = (α1,α2, . . .αm)T

∇2C(f) = [0]a matrix of 0's, sin
e C(f) is linear
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Convex setsDe�nition: A set Ω is a 
onvex set in Rm if for all
x,y ∈ Ω, tx+(1− t)y ∈ Ω for all t ∈ [0,1].

i.e. 
hords between points in the set lie inside the set.

Convex Set Non−convex Set
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Convex fun
tionsDe�nition: Let Ω be a 
onvex set in Rm. A fun
tion
f : Ω → R is a 
onvex fun
tion if for all λ ∈ (0,1),

C(f+λ∆f) ≤C(f)+λ(C(f+∆f)−C(f)),for all f, f+∆f ∈ Ω. In 2-D, one 
an pi
ture this as the
hord joining ( f ,C( f )) and ( f +∆ f ,C( f +∆ f )) sittingabove the 
urve y = C( f ).
f+  f

C(f) +   [C(f+  f) − C(f)]

f+    fλ∆f ∆

C(f+    f)λ∆

C

λ ∆
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Convex fun
tions
f f

C(f)
C(f)

not convex convex
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Convex differentiable fun
tionsTheorem: Let Ω be a 
onvex set in Rm. A differentiablefun
tion C : Ω → R is 
onvex iff

C(f+∆f) ≥C(f)+∇C(f)T∆f.Proof: Omitted. Proof uses a Taylor Series approa
h.

Thus a differentiable fun
tion is 
onvex iff
C(f+∆f)−C(f) ≥ ∇C(f)T∆f.

Says that tangents will lie below the 
onvex fun
tion.
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Convex differentiable fun
tionsTheorem: A differentiable fun
tion C is 
onvex on the
onvex set Ω iff the Hessian ∇2C(f) is positivesemide�nite on Ω i.e. C is 
onvex iff zT∇2C(f)z ≥ 0 for allve
tors z ∈ Ωi.e. C is 
onvex iff ∆fT∇2C(f)∆f ≥ 0 for all ∆f ∈ Ω.
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Example
A separable, differentiable fun
tion C(f) = ∑ece( fe) is
onvex iff c′′e( fe) = ∂2ce( fe)

∂ f 2
e

≥ 0 for all e∈ E.Explanation:To be positive semi-de�nite we must have
zT∇2C(f)z = ∑e

∂2ce( fe)
∂ f 2

e
z2
e ≥ 0 for all z.(⇒) 
learly if c′′e( fe) ≥ 0 then the sum above is ≥ 0(⇐) Also, re
all that in this example,

∇2C(f) =
[diag{c′′e1

( fe1), . . . ,c
′′
em

( fem)}
]

If z = (0.. . . .0,1,0, . . .0)T with the '1' in the i-th spot, then

zT∇2C(f)z = c′′ei
( fei) and hen
e we must have cei 
onvex forall i
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Simple queueing model

Imagine we wish to minimize delays 
aused by queueingsimple queueing model M/M/1 queueaverage queueing delay on a link is given by
c( fe; re) =

fe
re− fewhere fe is the link load, and re is the 
apa
ityAssume that the intera
tions between queues are weakKleinro
k's Independen
e Approximation

C(f ;r) = ∑
e∈E

c( fe; re) = ∑
e∈E

fe
re− fe
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Simple queueing model
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The fun
tion is in
reasing, 
onvex and differentiable(ex
ept at re), with an asymptote at re
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Minima
onvex fun
tions have a unique minimumnon-
onvex fun
tions 
an have non-unique minima,and lo
al minimaby de�nition, at the minima f̂ we get
C(f̂) ≤C(f̂+∆f)if differentiable, for all feasible routing 
hanges

∇C(f̂)T∆f ≥ 0reason lies in Taylor's theorem

C(f+λ∆f) = C(f)+λ∇C(f)T∆f+O(λ2)If ∇C(f̂)T∆f < 0, for small λ > 0 then C(f̂) > C(f̂+λ∆f)
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Feasible routing 
hanges

Feasible 
hange in routing ∆xno path traf�
 
an go negative
xµ+∆xµ ≥ 0, ∀µ∈ Ppqtraf�
 must be 
onserved
∑

µ∈Ppq

∆xµ = 0, ∀ [p,q] ∈ K,

note that the 
hange in link loads will be

∆ fe = ∑
µ∈P:e∈µ

∆xµ ∀e∈ E
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Separable 
ost fun
tions

if we have 
ost fun
tion C(f)

∇C(f)T∆f = ∑
e∈E

∂C(f)
∂ fe

.∆ fe

= ∑
e∈E

∂C(f)
∂ fe

.

(

∑
µ∈P:e∈µ

∆xµ

)

= ∑
µ∈P

(

∑
e∈µ

∂C(f)
∂ fe

)

.∆xµ

= ∑
µ∈P

lµ(f)∆xµ

∑
e∈µ

∂C(f)
∂ fe

= lµ(f) is 
alled path length (again)note that path length now depends on the loads f
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Shortest path with non-linear 
osts
lµ(f) is 
alled the length of path µ, and

∇C(f)T∆f = ∑
µ∈P

lµ(f)∆xµ.

For a load f and any O-D pair [p,q] ∈ K, let̂
lpq(f) = min{lµ(f) : µ∈ Ppq}As before, we 
all a path µ= µ̂∈ Ppq for whi
h

lµ̂(f) = l̂pq(f) a shortest path for [p,q].Note that this is 
onsistent with the previous examplewhere ∂C
∂ fe

= αe.
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Shortest path with non-linear 
osts

Theorem: A minimum 
ost routing implies a shortestpath routing (though the reverse is not ne
essarily true).Proof: Suppose the routing is NOT a shortest pathrouting. In parti
ular, assume some traf�
 for the O-Dpair [p,q] ∈ K is assigned to a path µ′ ∈ Ppq whi
h is NOTof shortest length. That is,
lµ′(f) > l̂pq(f) and xµ′ > 0.Let µ̂∈ Ppq be a shortest path for [p,q]. So lµ̂(f) = l̂pq(f).
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Shortest path with non-linear 
osts

Proof (
ontinued): Reroute as follows:
∆xµ′ = −δ
∆xµ̂ = δ
∆xµ = 0 ∀ other µ∈ P,where 0 < δ ≤ xµ′ . Then note lµ′(f) > lµ̂(f)

∇C(f)T∆f = ∑µ∈P lµ(f)∆xµ

= −lµ′(f)δ+ lµ̂(f)δ
= (−lµ′(f)+ lµ̂(f))δ(something -ve). (something +ve)

< 0.Thus if the routing is not a shortest path routing,

∇C(f)T∆f < 0 whi
h means it 
annot be minimum 
ost.
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Shortest path with 
onvex 
osts

Theorem: If C(f) is 
onvex and differentiable, then x isa minimum 
ost routing iff x is a shortest path routing.Proof: ⇒ from previous theorem
⇐ from properties of 
onvex fun
tions:assume we have shortest path routing, e.g.

xµ = 0,∀µ∈ Ppq not a shortest pathfor a routing 
hange ∆x, then ∆xµ ≥ 0,∀µ∈ Ppq whi
hare not shortest paths, i.e.
∆xµ ≥ 0 when lµ(f) > l̂pq(f)Also, for all µ∈ Ppq whi
h are shortest paths,

∆xµ ≥−xµ when lµ(f) = l̂pq(f).
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Shortest path with 
onvex 
osts

Proof: (
ont) ⇒ (lµ(f)− l̂pq(f))∆xµ ≥ 0, ∀ [p,q],µ∈ Ppqeither �rst term > 0 and se
ond ≥ 0or �rst term =0, so se
ond term is irrelevantSo lµ(f)∆xµ ≥ l̂pq(f)∆xµ. Therefore
∇C(f)T∆f = ∑

µ∈P

lµ(f)∆xµ

= ∑
[p,q]∈K

∑
µ∈Ppq

lµ(f)∆xµ

≥ ∑
[p,q]∈K

∑
µ∈Ppq

l̂pq(f)∆xµ

= ∑
[p,q]∈K

l̂pq(f)

(

∑
µ∈Ppq

∆xµ

)

= 0, sin
e ∑
µ∈Ppq

∆xµ = 0.
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Shortest path with 
onvex 
osts

Proof: (
ont)Thus ∇C(f)T∆f ≥ 0 for all feasible 
hanges in load ∆f.Now one of the properties of a 
onvex differentiablefun
tion C(f) is that

C(f+∆f)−C(f) ≥ ∇C(f)T∆f.If C(f̂)T∆f ≥ 0 then
C(f̂+∆f)−C(f̂) ≥ 0or alternatively C(f̂+∆f) ≥C(f̂), whi
h means that C(f̂)takes its minimum value at f̂. 2
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Des
ent MethodsDe�nition: A ve
tor u ∈ R|P| is said to be a des
entdire
tion for the routing x, with indu
ed load f, if(i) uµ < 0⇒ xµ > 0.we 
an only subtra
t traf�
 from a path µ if thereis some traf�
 on it in the �rst pla
e!(ii) ∑
µ∈Ppq

uµ = 0 ∀ O-D pairs (p,q) ∈ Kany traf�
 we take from one path µ must be addedto the traf�
 on some other path(s)(iii) ∑
µ∈P

lµ(f)uµ < 0it is a des
ent ve
tor, i.e., the 
hange in C by going asmall distan
e in this dire
tion is negative.

Communications Network Design: lecture 08 – p.30/51



Des
ent Methods: notesThe 
hange in C for a small 
hange λu will be
C(f+λ∆f)−C(f) = λ ∑

µ∈P

lµ(f)uµ+O(λ2)

and we require that ∑
µ∈P

lµ(f)uµ < 0

The 
hange in routing will be ∆x = λu, for some small

λ > 0. λ must be 
hosen with two things in mind:(a) x+∆x, the new routing, must still be feasible.(b) we only go as far in the dire
tion u as we needto, to get maximum de
rease in C(f), in thatdire
tion.
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Des
ent MethodsBroadly, the method 
onsists of the following steps:1. Choose a feasible des
ent dire
tion u ∈ R|P|.2. Given that the new routing will be x+λu, 
hoose astep length λ > 0 so that(i) x+λu is feasible (i.e. ≥ 0)(ii) x+λu minimises the 
ost of the indu
ed load.3. Change the routing and the indu
ed load4. Unless you have a minimum, goto step 1.(i) For 
onvex 
osts, when we have a shortest pathrouting, we have rea
hed the minima.
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Cal
ulating the new 
ost

Take the 
hange in routing to be ∆x = λu

∆ fe = ∑
µ:e∈µ

∆xµ

= λ ∑
µ:e∈µ

uµ

= λvewhere we de�ne ve = ∑
µ:e∈µ

uµ and v = (ve : e∈ E) ∈ Rm.

More su

in
tly ∆f = λv and the new 
ost is C(f+λv).
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Des
ent Method 1Simple ex
hange method:transfer some traf�
 from a longer path µ∗ ∈ Ppq toa shortest path µ̂∈ Ppq, i.e. lµ∗(f) > lµ̂(f) = lµ̂(f)des
ent dire
tion u has 
omponents
uµ∗ = −1 transfer off µ∗

uµ̂ = +1 transfer onto µ̂∗

uµ = 0 ∀ other µ∈ PNote that with u as above
∑
µ

lµuµ = +lµ̂(f)− lµ∗(f) < 0

and therefore u is a des
ent dire
tion.
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Des
ent Method 1Simple ex
hange method:to maintain feasibility we require
0≤ λ ≤ xµ∗the ve
tor v has 
omponents

ve =











1 if e∈ µ̂ and e 6∈ µ∗

−1 if e∈ µ∗ and e 6∈ µ̂
0 otherwise

We wish to determine λ∗ ∈ [0,xµ∗] whi
h minimises

C(f+λv)
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Des
ent Method 1: example

An example networkCapa
ities re Traf�
 demands tpq

2

4

1

1

1

1 2

34 4 3

 21

  pq
1112424

tre
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Des
ent Method 1: example

Assume dire
t routing of the traf�
Costs ce( fe) =
fe

re− fe

dce

d fe
=

re

(re− fe)2

 21

ce (f  ) e
dce__

 e  df

1

1
11/3

1/3

1/3

2

2

2

4/9

4/9

4/9

3

1 2

34 4

Total 
ost C(f) = ∑ece( fe) = 3. 1
2−1 +3. 1

4−1 = 4
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Des
ent Method 1: example

shortest paths are as follow:OD pair dire
t path shortest path
1,2 1−2 1−4−2
1,3 1−3 1−4−3
1,4 1−4 1−4
2,3 2−3 2−4−3
2,4 2−4 2−4
3,4 3−4 3−4not all traf�
 is routed on the shortest path!For example: O-D pair [1,3℄, the shortest routewould be 1-4-3 (length of 8

9), but at present thetraf�
 is routed on 1-3 (length of 2)
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Des
ent Method 1: example

We transfer some load from a dire
t path, to a shortest pathe.g. transfer some �ow from path µ= 1−2 to µ= 1−4−2.In this problem, there are 30 paths in this network. So x and uhave 30 entries. Listing all paths lexi
ographi
ally, e.g. paths

1−2, 1−2−3, 1−2−4, 1−2−3−4, 1−2−4−3,

1−3, 1−3−2, 1−3−4, 1−3−2−4, 1−3−4−2,

1−4, 1−4−2, 1−4−3, 1−4−2−3, 1−4−3−2, . . .

xT = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0)and

uT = (−1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
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Des
ent Method 1: example

We need to 
al
ulate ve given the above des
entdire
tion.

u1−2 = −1 whi
h sayswe redu
e the traf�
 on path 1−2and hen
e on link 1−2so this gives us v1−2 = −1

u1−4−2 = 1 whi
h sayswe in
rease the traf�
 on path 1−4−2and hen
e on links 1−4 and 4−2so this gives us v1−4 = v4−2 = 1Net effe
t is
v = (v1−2,v1−3,v1−4,v2−3,v2−4,v3−4)

T = (−1,0,1,0,1,0)T
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Des
ent Method 1: example

We move λ ∈ [0,1] in the des
ent dire
tion (above), so re
al
u-lating the 
osts we get

C(f+λv) = ∑
e

ce( fe+λve)

= ∑
e

fe+λve

re− ( fe+λve)

= c+
f1−2−λ

r1−2− ( f1−2−λ)
+

f1−4 +λ
r1−4− ( f1−4 +λ)

+
f4−2 +λ

r4−2− ( f4−2 +λ)

= c+
1−λ

2−1+λ
+2

1+λ
4−1−λ

dC
dλ

= 2

(

−1
(1+λ)2

+
4

(3−λ)2

)
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Des
ent Method 1: example
dC
dλ

= 2

(

−1
(1+λ)2

+
4

(3−λ)2

)

whi
h is equal to zero for λ = 1/3, so this gives us outoptimal step size λ. The new �distan
es� are shownbelow. Note it is still not a shortest path graph.

4/9

9/16

9/16

2

2

9/8

e  df 
__e
dc 

4 3

21

Communications Network Design: lecture 08 – p.42/51



Des
ent Method 2Frank-Wolfe method:we know we are aiming for a shortest pathwhy not try to get there in one stepgiven a feasible routing x, �nd shortest pathrouting zset u = u−x, and λ ∈ [0,1]Find λ to minimize the new 
ost C(f+λv)Continuedon't really get there in one step, as shortest paths
hange when load 
hangesbut iterations 
onvergeproof on following slide
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Des
ent Method 2Lemma: If z is a shortest path routing wrt lµ(f) (where fis the load indu
ed by 
urrent routing x) then u = z−x isa des
ent dire
tion.Proof of Lemma: (re
all the de�nition)1. if xµ = 0 then uµ = zµ ≥ 02. ∑
µ∈Ppq

uµ = ∑
µ∈Ppq

zµ− ∑
µ∈Ppq

xµ = tpq− tpq = 0

3. ∑
µ∈P

lµ(f)uµ = ∑
[[p,q]∈K

∑
µ∈Ppq

(lµ(f)zµ− lµ(f)xµ) < 0sin
e z being shortest path routing implies se
ondsum is larger than �rst sum.Hen
e z−x is a des
ent dire
tion. 2
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Methods: Dynami
 feedba
k

ARPANET's earliest methods [1, 2℄.the M/M/1 model is not really a good model for theInternetwe don't a priori know the best modelwant a distributed algorithmwhat 
an we do?bright ideameasure delays (two different methods)use these in a SPF routingproblem: os
illationthe network and traf�
 are not stati
doesn't take mu
h to 
ause os
illation

Communications Network Design: lecture 08 – p.45/51



Greedy vs Hill Climbing

We have dis
ussed hill-
limbing todaya
tually we des
ribed des
ent methods, buthill-
limbing is just the reversefollow the path up (down) a hill (optimizationfun
tion)Greedy algorithms are similar
hoose the next best step at ea
h pointlike going up a hill, butonly a partial solution at ea
h step until the endDijkstra is a good example of a greedy algorithm
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Traf�
 Engineering

Modern IGP routing proto
ols are almost all based onsimple SPF algorithms with linear 
osts, but real 
ostsare non-linear. It works �ne most of the time, but when
ongestion o

urs, there is a problem. Traf�
engineering is the pro
ess of rebalan
ing traf�
 loads ona network to avoid 
ongestion.
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Now a'days

Modern IGP routing proto
ols are almost all based onsimple linear 
ost SPF algorithms!link 
osts are stati
: no dependen
e on 
ongestionmainly used for rerouting in failureshow 
an we optimize if the 
ost fun
tion is reallynon-linearoptimization be
omes 
hoi
e of the best weights αeNP-hard so need heuristi
s [3, 4, 5℄
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Planning horizons

More generallyreal way to optimize network is to 
hange its design(whi
h we 
onsider next)planning horizon for network redesign is monthsordering and delivery of equipmenttest and veri�
ation of equipmentwaiting for planned maintenan
e windowsavailability of te
hni
al staff
apital budgeting 
y
les.need a pro
ess to allow rebalan
ing of traf�
 onshorter time s
ale: traf�
 engineering

Communications Network Design: lecture 08 – p.49/51



Traf�
 Engineering

Traf�
 engineering �lls the gapPlanning horizon of hours/days: only need to 
hangerouter 
on�guration (the link weights)Two methodslink weight optimization (as above)MPLS: full optimization of all routing usingtunnelsBut a lot of traf�
 engineering is still done in a veryad ho
 way.
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