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Routing (ontinued)

The simple routing onsidered so far has �xeddistanes, but if we onsider a more queueing view ofnetworks, then pakets are delayed when a link is heavilyloaded, and so this inreases delays. Minimum delayrouting forms a non-linear, onvex optimization problemwith separable osts. We present two simple gradientdesent methods for solution of suh problems inludingthe Frank Wolfe method.
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Reap link-state routing

topology is �oodedinluding the link weights αalulate shortest pathsassumption of linear osts, based on weightsnot automatially based on ongestionapaity onstraints are ignored in theoptimizationso too muh traf� an be routed along any oneroutenote that the link weights are arbitraryhow an we use this to avoid ongestion?reap notation in leture 6
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Link loadsOne we know shortest paths, we an ompute link loads
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Costs are linear in the osts/distanes, and loads

C(f) = ∑
e∈E

αe fe = ∑
(p,q)∈K

l̂pqtpq

either link or path osts and loads an be used.
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Example ost alulation

OD pair load tpq path path length l̂pqtpq

(1,2) t12 = 1 1−3−2 l̂12 = 5 5
(1,3) t13 = 2 1−3 l̂13 = 3 6
(1,4) t14 = 3 1−3−4 l̂14 = 4 12
(1,5) t15 = 4 1−3−2−5 l̂15 = 6 24
(2,3) t23 = 2 3−2 l̂23 = 2 4
(2,4) t24 = 3 2−3−4 l̂24 = 3 9
(2,5) t25 = 3 2−5 l̂25 = 1 3
(3,4) t34 = 2 3−4 l̂34 = 1 2
(3,5) t35 = 1 3−2−5 l̂35 = 3 3
(4,5) t45 = 2 4−3−2−5 l̂45 = 4 8total ost 76
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Example loads on links
linksOD pair tpq (1,3) (2,3) (2,4) (3,5)

(1,2) t12 = 1 1 1
(1,3) t13 = 2 2
(1,4) t14 = 3 3 3
(1,5) t15 = 4 4 4 4
(2,3) t23 = 2 2
(2,4) t24 = 3 3
(2,5) t25 = 3 3
(3,4) t34 = 2 2
(3,5) t35 = 1 1 1
(4,5) t45 = 2 2 2 2total load 10 13 10 10
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Alternative ost alulation

link αe fe ost αe× fe
(1,3) 3 10 30
(2,3) 2 13 26
(2,4) 1 10 10
(3,5) 1 10 10total 76
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This also tells us the link loads, from whih we ouldestimate ongestion.
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Link loadsWhy should this result in low ost network?link weights relate to link osthigher weight results in less traf�hene less ostrelationship between link loads and shortest pathsshorter paths result in fewer hopsso less resoures usedless ostBut is a linear model the right approah?
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Non-linear ost funtionsNon-linear funtions ould be anything: we will restritourselves toontinuous funtionsno breaks in the funtiondifferentiableno orners or edges in the funtionassume its differentiable enoughan de�ne gradient and Hessianonvex funtionshords lie above the funtion
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Differentiable funtions

The gradient ∇C(f) =
(

∂C(f)
∂ fe

: e∈ E
) is the vetor of �rstpartial derivatives of C.For example

C(f) = ∑
e∈E

fe
re− fe

= ∑
e∈E

[

re

re− fe
−1

]

has gradient

∂C(f)
∂ fe

=
re

(re− fe)2

and ∇C(f) =













re1
(re1− fe1)2

re2
(re2− fe2)2...

rem
(rem− fem)2
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Differentiable funtions

The Hessian ∇2C(f) =
(

∂2C(f)
∂ fe∂ fg

: e,g∈ E
) is the squarematrix of all seond partial derivatives of C.Example above has

∇2C(f) =



















2re1
(re1− fe1)3 0 . . . 0

0
2re2

(re2− fe2)3 . . . 0

...
0 0 . . . 2rem

(rem− fem)3



















Note that in this example, the Hessian is a diagonalmatrix. This will always be the ase when C is separablein fe. i.e. C(f) = ∑e∈E ce( fe).
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Linear ost example

C(f) = ∑
e∈E

αe fe

∇C(f) = (α1,α2, . . .αm)T

∇2C(f) = [0]a matrix of 0's, sine C(f) is linear
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Convex setsDe�nition: A set Ω is a onvex set in Rm if for all
x,y ∈ Ω, tx+(1− t)y ∈ Ω for all t ∈ [0,1].

i.e. hords between points in the set lie inside the set.

Convex Set Non−convex Set
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Convex funtionsDe�nition: Let Ω be a onvex set in Rm. A funtion
f : Ω → R is a onvex funtion if for all λ ∈ (0,1),

C(f+λ∆f) ≤C(f)+λ(C(f+∆f)−C(f)),for all f, f+∆f ∈ Ω. In 2-D, one an piture this as thehord joining ( f ,C( f )) and ( f +∆ f ,C( f +∆ f )) sittingabove the urve y = C( f ).
f+  f

C(f) +   [C(f+  f) − C(f)]

f+    fλ∆f ∆

C(f+    f)λ∆

C

λ ∆
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Convex funtions
f f

C(f)
C(f)

not convex convex
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Convex differentiable funtionsTheorem: Let Ω be a onvex set in Rm. A differentiablefuntion C : Ω → R is onvex iff

C(f+∆f) ≥C(f)+∇C(f)T∆f.Proof: Omitted. Proof uses a Taylor Series approah.

Thus a differentiable funtion is onvex iff
C(f+∆f)−C(f) ≥ ∇C(f)T∆f.

Says that tangents will lie below the onvex funtion.

Communications Network Design: lecture 08 – p.16/51



Convex differentiable funtionsTheorem: A differentiable funtion C is onvex on theonvex set Ω iff the Hessian ∇2C(f) is positivesemide�nite on Ω i.e. C is onvex iff zT∇2C(f)z ≥ 0 for allvetors z ∈ Ωi.e. C is onvex iff ∆fT∇2C(f)∆f ≥ 0 for all ∆f ∈ Ω.
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Example
A separable, differentiable funtion C(f) = ∑ece( fe) isonvex iff c′′e( fe) = ∂2ce( fe)

∂ f 2
e

≥ 0 for all e∈ E.Explanation:To be positive semi-de�nite we must have
zT∇2C(f)z = ∑e

∂2ce( fe)
∂ f 2

e
z2
e ≥ 0 for all z.(⇒) learly if c′′e( fe) ≥ 0 then the sum above is ≥ 0(⇐) Also, reall that in this example,

∇2C(f) =
[diag{c′′e1

( fe1), . . . ,c
′′
em

( fem)}
]

If z = (0.. . . .0,1,0, . . .0)T with the '1' in the i-th spot, then

zT∇2C(f)z = c′′ei
( fei) and hene we must have cei onvex forall i
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Simple queueing model

Imagine we wish to minimize delays aused by queueingsimple queueing model M/M/1 queueaverage queueing delay on a link is given by
c( fe; re) =

fe
re− fewhere fe is the link load, and re is the apaityAssume that the interations between queues are weakKleinrok's Independene Approximation

C(f ;r) = ∑
e∈E

c( fe; re) = ∑
e∈E

fe
re− fe
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Simple queueing model
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The funtion is inreasing, onvex and differentiable(exept at re), with an asymptote at re

Communications Network Design: lecture 08 – p.20/51



Minimaonvex funtions have a unique minimumnon-onvex funtions an have non-unique minima,and loal minimaby de�nition, at the minima f̂ we get
C(f̂) ≤C(f̂+∆f)if differentiable, for all feasible routing hanges

∇C(f̂)T∆f ≥ 0reason lies in Taylor's theorem

C(f+λ∆f) = C(f)+λ∇C(f)T∆f+O(λ2)If ∇C(f̂)T∆f < 0, for small λ > 0 then C(f̂) > C(f̂+λ∆f)
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Feasible routing hanges

Feasible hange in routing ∆xno path traf� an go negative
xµ+∆xµ ≥ 0, ∀µ∈ Ppqtraf� must be onserved
∑

µ∈Ppq

∆xµ = 0, ∀ [p,q] ∈ K,

note that the hange in link loads will be

∆ fe = ∑
µ∈P:e∈µ

∆xµ ∀e∈ E
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Separable ost funtions

if we have ost funtion C(f)

∇C(f)T∆f = ∑
e∈E

∂C(f)
∂ fe

.∆ fe

= ∑
e∈E

∂C(f)
∂ fe

.

(

∑
µ∈P:e∈µ

∆xµ

)

= ∑
µ∈P

(

∑
e∈µ

∂C(f)
∂ fe

)

.∆xµ

= ∑
µ∈P

lµ(f)∆xµ

∑
e∈µ

∂C(f)
∂ fe

= lµ(f) is alled path length (again)note that path length now depends on the loads f
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Shortest path with non-linear osts
lµ(f) is alled the length of path µ, and

∇C(f)T∆f = ∑
µ∈P

lµ(f)∆xµ.

For a load f and any O-D pair [p,q] ∈ K, let̂
lpq(f) = min{lµ(f) : µ∈ Ppq}As before, we all a path µ= µ̂∈ Ppq for whih

lµ̂(f) = l̂pq(f) a shortest path for [p,q].Note that this is onsistent with the previous examplewhere ∂C
∂ fe

= αe.
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Shortest path with non-linear osts

Theorem: A minimum ost routing implies a shortestpath routing (though the reverse is not neessarily true).Proof: Suppose the routing is NOT a shortest pathrouting. In partiular, assume some traf� for the O-Dpair [p,q] ∈ K is assigned to a path µ′ ∈ Ppq whih is NOTof shortest length. That is,
lµ′(f) > l̂pq(f) and xµ′ > 0.Let µ̂∈ Ppq be a shortest path for [p,q]. So lµ̂(f) = l̂pq(f).
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Shortest path with non-linear osts

Proof (ontinued): Reroute as follows:
∆xµ′ = −δ
∆xµ̂ = δ
∆xµ = 0 ∀ other µ∈ P,where 0 < δ ≤ xµ′ . Then note lµ′(f) > lµ̂(f)

∇C(f)T∆f = ∑µ∈P lµ(f)∆xµ

= −lµ′(f)δ+ lµ̂(f)δ
= (−lµ′(f)+ lµ̂(f))δ(something -ve). (something +ve)

< 0.Thus if the routing is not a shortest path routing,

∇C(f)T∆f < 0 whih means it annot be minimum ost.

Communications Network Design: lecture 08 – p.26/51



Shortest path with onvex osts

Theorem: If C(f) is onvex and differentiable, then x isa minimum ost routing iff x is a shortest path routing.Proof: ⇒ from previous theorem
⇐ from properties of onvex funtions:assume we have shortest path routing, e.g.

xµ = 0,∀µ∈ Ppq not a shortest pathfor a routing hange ∆x, then ∆xµ ≥ 0,∀µ∈ Ppq whihare not shortest paths, i.e.
∆xµ ≥ 0 when lµ(f) > l̂pq(f)Also, for all µ∈ Ppq whih are shortest paths,

∆xµ ≥−xµ when lµ(f) = l̂pq(f).
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Shortest path with onvex osts

Proof: (ont) ⇒ (lµ(f)− l̂pq(f))∆xµ ≥ 0, ∀ [p,q],µ∈ Ppqeither �rst term > 0 and seond ≥ 0or �rst term =0, so seond term is irrelevantSo lµ(f)∆xµ ≥ l̂pq(f)∆xµ. Therefore
∇C(f)T∆f = ∑

µ∈P

lµ(f)∆xµ

= ∑
[p,q]∈K

∑
µ∈Ppq

lµ(f)∆xµ

≥ ∑
[p,q]∈K

∑
µ∈Ppq

l̂pq(f)∆xµ

= ∑
[p,q]∈K

l̂pq(f)

(

∑
µ∈Ppq

∆xµ

)

= 0, sine ∑
µ∈Ppq

∆xµ = 0.
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Shortest path with onvex osts

Proof: (ont)Thus ∇C(f)T∆f ≥ 0 for all feasible hanges in load ∆f.Now one of the properties of a onvex differentiablefuntion C(f) is that

C(f+∆f)−C(f) ≥ ∇C(f)T∆f.If C(f̂)T∆f ≥ 0 then
C(f̂+∆f)−C(f̂) ≥ 0or alternatively C(f̂+∆f) ≥C(f̂), whih means that C(f̂)takes its minimum value at f̂. 2
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Desent MethodsDe�nition: A vetor u ∈ R|P| is said to be a desentdiretion for the routing x, with indued load f, if(i) uµ < 0⇒ xµ > 0.we an only subtrat traf� from a path µ if thereis some traf� on it in the �rst plae!(ii) ∑
µ∈Ppq

uµ = 0 ∀ O-D pairs (p,q) ∈ Kany traf� we take from one path µ must be addedto the traf� on some other path(s)(iii) ∑
µ∈P

lµ(f)uµ < 0it is a desent vetor, i.e., the hange in C by going asmall distane in this diretion is negative.
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Desent Methods: notesThe hange in C for a small hange λu will be
C(f+λ∆f)−C(f) = λ ∑

µ∈P

lµ(f)uµ+O(λ2)

and we require that ∑
µ∈P

lµ(f)uµ < 0

The hange in routing will be ∆x = λu, for some small

λ > 0. λ must be hosen with two things in mind:(a) x+∆x, the new routing, must still be feasible.(b) we only go as far in the diretion u as we needto, to get maximum derease in C(f), in thatdiretion.
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Desent MethodsBroadly, the method onsists of the following steps:1. Choose a feasible desent diretion u ∈ R|P|.2. Given that the new routing will be x+λu, hoose astep length λ > 0 so that(i) x+λu is feasible (i.e. ≥ 0)(ii) x+λu minimises the ost of the indued load.3. Change the routing and the indued load4. Unless you have a minimum, goto step 1.(i) For onvex osts, when we have a shortest pathrouting, we have reahed the minima.

Communications Network Design: lecture 08 – p.32/51



Calulating the new ost

Take the hange in routing to be ∆x = λu

∆ fe = ∑
µ:e∈µ

∆xµ

= λ ∑
µ:e∈µ

uµ

= λvewhere we de�ne ve = ∑
µ:e∈µ

uµ and v = (ve : e∈ E) ∈ Rm.

More suintly ∆f = λv and the new ost is C(f+λv).
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Desent Method 1Simple exhange method:transfer some traf� from a longer path µ∗ ∈ Ppq toa shortest path µ̂∈ Ppq, i.e. lµ∗(f) > lµ̂(f) = lµ̂(f)desent diretion u has omponents
uµ∗ = −1 transfer off µ∗

uµ̂ = +1 transfer onto µ̂∗

uµ = 0 ∀ other µ∈ PNote that with u as above
∑
µ

lµuµ = +lµ̂(f)− lµ∗(f) < 0

and therefore u is a desent diretion.
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Desent Method 1Simple exhange method:to maintain feasibility we require
0≤ λ ≤ xµ∗the vetor v has omponents

ve =











1 if e∈ µ̂ and e 6∈ µ∗

−1 if e∈ µ∗ and e 6∈ µ̂
0 otherwise

We wish to determine λ∗ ∈ [0,xµ∗] whih minimises

C(f+λv)
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Desent Method 1: example

An example networkCapaities re Traf� demands tpq

2

4

1

1

1

1 2

34 4 3

 21

  pq
1112424

tre
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Desent Method 1: example

Assume diret routing of the traf�Costs ce( fe) =
fe

re− fe

dce

d fe
=

re

(re− fe)2

 21

ce (f  ) e
dce__

 e  df

1

1
11/3

1/3

1/3

2

2

2

4/9

4/9

4/9

3

1 2

34 4

Total ost C(f) = ∑ece( fe) = 3. 1
2−1 +3. 1

4−1 = 4
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Desent Method 1: example

shortest paths are as follow:OD pair diret path shortest path
1,2 1−2 1−4−2
1,3 1−3 1−4−3
1,4 1−4 1−4
2,3 2−3 2−4−3
2,4 2−4 2−4
3,4 3−4 3−4not all traf� is routed on the shortest path!For example: O-D pair [1,3℄, the shortest routewould be 1-4-3 (length of 8

9), but at present thetraf� is routed on 1-3 (length of 2)
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Desent Method 1: example

We transfer some load from a diret path, to a shortest pathe.g. transfer some �ow from path µ= 1−2 to µ= 1−4−2.In this problem, there are 30 paths in this network. So x and uhave 30 entries. Listing all paths lexiographially, e.g. paths

1−2, 1−2−3, 1−2−4, 1−2−3−4, 1−2−4−3,

1−3, 1−3−2, 1−3−4, 1−3−2−4, 1−3−4−2,

1−4, 1−4−2, 1−4−3, 1−4−2−3, 1−4−3−2, . . .

xT = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0)and

uT = (−1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
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Desent Method 1: example

We need to alulate ve given the above desentdiretion.

u1−2 = −1 whih sayswe redue the traf� on path 1−2and hene on link 1−2so this gives us v1−2 = −1

u1−4−2 = 1 whih sayswe inrease the traf� on path 1−4−2and hene on links 1−4 and 4−2so this gives us v1−4 = v4−2 = 1Net effet is
v = (v1−2,v1−3,v1−4,v2−3,v2−4,v3−4)

T = (−1,0,1,0,1,0)T
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Desent Method 1: example

We move λ ∈ [0,1] in the desent diretion (above), so realu-lating the osts we get

C(f+λv) = ∑
e

ce( fe+λve)

= ∑
e

fe+λve

re− ( fe+λve)

= c+
f1−2−λ

r1−2− ( f1−2−λ)
+

f1−4 +λ
r1−4− ( f1−4 +λ)

+
f4−2 +λ

r4−2− ( f4−2 +λ)

= c+
1−λ

2−1+λ
+2

1+λ
4−1−λ

dC
dλ

= 2

(

−1
(1+λ)2

+
4

(3−λ)2

)

Communications Network Design: lecture 08 – p.41/51



Desent Method 1: example
dC
dλ

= 2

(

−1
(1+λ)2

+
4

(3−λ)2

)

whih is equal to zero for λ = 1/3, so this gives us outoptimal step size λ. The new �distanes� are shownbelow. Note it is still not a shortest path graph.

4/9

9/16

9/16

2

2

9/8

e  df 
__e
dc 

4 3

21
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Desent Method 2Frank-Wolfe method:we know we are aiming for a shortest pathwhy not try to get there in one stepgiven a feasible routing x, �nd shortest pathrouting zset u = u−x, and λ ∈ [0,1]Find λ to minimize the new ost C(f+λv)Continuedon't really get there in one step, as shortest pathshange when load hangesbut iterations onvergeproof on following slide
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Desent Method 2Lemma: If z is a shortest path routing wrt lµ(f) (where fis the load indued by urrent routing x) then u = z−x isa desent diretion.Proof of Lemma: (reall the de�nition)1. if xµ = 0 then uµ = zµ ≥ 02. ∑
µ∈Ppq

uµ = ∑
µ∈Ppq

zµ− ∑
µ∈Ppq

xµ = tpq− tpq = 0

3. ∑
µ∈P

lµ(f)uµ = ∑
[[p,q]∈K

∑
µ∈Ppq

(lµ(f)zµ− lµ(f)xµ) < 0sine z being shortest path routing implies seondsum is larger than �rst sum.Hene z−x is a desent diretion. 2
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Methods: Dynami feedbak

ARPANET's earliest methods [1, 2℄.the M/M/1 model is not really a good model for theInternetwe don't a priori know the best modelwant a distributed algorithmwhat an we do?bright ideameasure delays (two different methods)use these in a SPF routingproblem: osillationthe network and traf� are not statidoesn't take muh to ause osillation
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Greedy vs Hill Climbing

We have disussed hill-limbing todayatually we desribed desent methods, buthill-limbing is just the reversefollow the path up (down) a hill (optimizationfuntion)Greedy algorithms are similarhoose the next best step at eah pointlike going up a hill, butonly a partial solution at eah step until the endDijkstra is a good example of a greedy algorithm
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Traf� Engineering

Modern IGP routing protools are almost all based onsimple SPF algorithms with linear osts, but real ostsare non-linear. It works �ne most of the time, but whenongestion ours, there is a problem. Traf�engineering is the proess of rebalaning traf� loads ona network to avoid ongestion.
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Now a'days

Modern IGP routing protools are almost all based onsimple linear ost SPF algorithms!link osts are stati: no dependene on ongestionmainly used for rerouting in failureshow an we optimize if the ost funtion is reallynon-linearoptimization beomes hoie of the best weights αeNP-hard so need heuristis [3, 4, 5℄

Communications Network Design: lecture 08 – p.48/51



Planning horizons

More generallyreal way to optimize network is to hange its design(whih we onsider next)planning horizon for network redesign is monthsordering and delivery of equipmenttest and veri�ation of equipmentwaiting for planned maintenane windowsavailability of tehnial staffapital budgeting yles.need a proess to allow rebalaning of traf� onshorter time sale: traf� engineering
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Traf� Engineering

Traf� engineering �lls the gapPlanning horizon of hours/days: only need to hangerouter on�guration (the link weights)Two methodslink weight optimization (as above)MPLS: full optimization of all routing usingtunnelsBut a lot of traf� engineering is still done in a veryad ho way.
Communications Network Design: lecture 08 – p.50/51



References[1℄ J. M.MQuillan, G. Falk, and I. Riher, �A review of the development andperformane of the ARPANET routing algorithm,� IEEE Transations onCommuniation, vol. COM-26, pp. 60�74, Deember 1978.[2℄ J. M.MQuillan, I. Riher, and E. C. Rosen, �A new routing algorithm for theARPANET,� IEEE Transations on Communiation, vol. COM-28, pp. 711�719, May1980.[3℄ B. Fortz, J. Rexford, and M. Thorup, �Traf� engineering with traditional IP routingprotools,� IEEE Communiations Magazine, vol. 40, no. 10, pp. 118�124, 2002.[4℄ B. Fortz and M. Thorup, �Optimizing OSPF/IS-IS weights in a hanging world,� IEEEJournal on Seleted Areas in Communiations, vol. 20, no. 4, pp. 756�767, 2002.[5℄ M. Roughan, M. Thorup, and Y. Zhang, �Performane of estimated traf� matries intraf� engineering,� in ACM SIGMETRICS, (San Diego, CA, USA), pp. 326�327,2003.
Communications Network Design: lecture 08 – p.51/51


	
	Recap link-state routing
	Link loads
	Example cost calculation
	Example loads on links
	Alternative cost calculation
	Link loads
	Non-linear cost functions
	Differentiable functions
	Differentiable functions
	Linear cost example
	Convex sets
	Convex functions
	Convex functions
	Convex differentiable functions
	Convex differentiable functions
	Example
	Simple queueing model
	Simple queueing model
	Minima
	Feasible routing changes
	Separable cost functions
	Shortest path with non-linear costs
	Shortest path with non-linear costs
	Shortest path with non-linear costs
	Shortest path with convex costs
	Shortest path with convex costs
	Shortest path with convex costs
	Descent Methods
	Descent Methods: notes
	Descent Methods
	Calculating the new cost
	Descent Method 1
	Descent Method 1
	Descent Method 1: example
	Descent Method 1: example
	Descent Method 1: example
	Descent Method 1: example
	Descent Method 1: example
	Descent Method 1: example
	Descent Method 1: example
	Descent Method 2
	Descent Method 2
	Methods: Dynamic feedback
	Greedy vs Hill Climbing
	
	Now a'days
	Planning horizons
	Traffic Engineering
	

