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Conave ostsWhen osts are onave, the network design problemhas properties like single path routing. A ommonexample is linear osts. Also we present a simpleheursiti approah.
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Notation reap

Mostly as before (leture 6)A network is a graph G(N,E), with nodes
N = {1,2, . . .n} and links E ⊆ N×NOffered traf� between O-D pair (p,q) is tpqThe set of all paths in G(N,E) is P = ∪[p,q]∈KPpqEah link e∈ E hasa apaity, denoted by re(≥ 0)a distane de(≥ 0)a load fe(≥ 0)The vetor x = (xµ : µ∈ P) is alled the routing

fe = ∑
µ∈P:e∈µ

xµ
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Multiommodity �ow problem

Completely general aseobjetive: minimize some ost funtiononstrution osts based on apaities reperformane osts (e.g. delays, reliability, ...)based on re and feinput:a set of nodes Nforeast traf� demands tpqonstraints are �ow based (as before)loads on links are implied by routing of traf�link loads ≤ apaitiesCall it the multiommodity �ow problem
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A simpli�ed problem

in general osts depend on re and felets us start a little simpleronly inlude onstrution ostsnot performane ostsassume we hoose re = fehoose apaities to arry required loadsould inlude some overhead,e.g. re = γ fe for some γ > 1problem simpli�es to hoosing whih links we need inour networkit beomes an integer programming problemit has a diret relationship to least-ost routingon a omplete graph
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Formal problem spei�ation

Formal problem spei�ation:

(P) min. C(f) = ∑
e∈E

ce( fe)s.t. fe = ∑
µ∈P:e∈µ

xµ ∀e∈ E.

xµ ≥ 0 ∀µ∈ P

∑
µ∈Ppq

xµ = tpq ∀ [p,q] ∈ K.

Where we then take re = γ fe, ∀e∈ EThis looks the same as for routing, but the set E is theset of all possible links, rather than a given set, and theost funtion C will be different (though still separable).
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Typial ost funtion

assume the ost funtion is ontinuous on [0,∞) anddifferentiable on (0,∞)assume the ost funtion nondereasingassume the ost funtion is separable
C(f) = ∑

e

ce( fe)

assume the ost funtion is onave
C(f) is onave over Ω if for all λ ∈ [0,1], and allfeasible loads f1, f2 ∈ Ω,

C(λf1 +(1−λ)f2) ≥ λC(f1)+(1−λ)C(f2)hords lie below the funtion
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Conave
f1 f2

C(f)

below the curve
a chord lies
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Conave ostsonave osts represent �eonomy of sales�operations at a larger sale have a smallermarginal ost, e.g. ∂ce
∂ fe

is dereasingoperations at a larger sale have a smalleraverage ost, e.g. ce( fe)
fe

is dereasingalternative view �multiplexing gain�multiplexed (grouped) traf� has a lowerrelative variane, and so is less �bursty�less overhead is required for smoother traf�Example
ce( fe) = ke f α

e , ke = onstant, α ∈ (0.4,0.6)
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Conave osts and routing

we have so far (today) ignored routingnie result that shows for onave osts, we onlyneed to onsider single path routing (no loadsharing)Proposition: If C(f) is a onave ost funtion of load f,then the minimum is attained by routing tpq on a singlepath µ̂pq for all O-D pairs [p,q] ∈ K.
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Example of single path routing
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Example of single path routing
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Example of single path routing
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Example of single path routing
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Conave osts and routing: proof

Proof: Let us take two paths µ1,µ2 ∈ Ppq. Suppose thereis a routing x = (xµ : µ∈ P) suh that the traf� betweenthe O-D pair [p,q] is routed aross both µ1 and µ2,i.e. xµ1 > 0 and xµ2 > 0.Let f be the link loads indued by x; so
fe = ∑

µ:e∈µ

xµ

Consider two ases:the traf� xµ2 on µ2 is moved to µ1 induing loads f(1)the traf� xµ1 on µ1 is moved to µ2 induing loads f(2)
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Conave osts and routing: proof

The net result is:

f =
xµ1f

(1) +xµ2f
(2)

xµ1 +xµ2

=
xµ1

xµ1 +xµ2

f(1) +
xµ2

xµ1 +xµ2

f(2) (1)

and therefore, for all e∈ E,
fe =

xµ1 f (1)
e +xµ2 f (2)

e

xµ1 +xµ2

(2)

In both ases links e 6∈ µ1,µ2 and links e∈ µ1,µ2 haveload unaltered, e.g. f (1)
e = f (2)

e = fe.Only those links on preisely one of the paths µ1,µ2have loads altered by this proess.
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Conave osts and routing: proof

In more detail: hek this out for links e∈ E:if e∈ µ1 and e∈ µ2 then f (1)
e = f (2)

e = fe so equation (2)orretly gives the load as fe.if e 6∈ µ1 and e 6∈ µ2 then f (1)
e = f (2)

e = fe, and (2) is OK.if e∈ µ1 but 6∈ µ2 then f (1)
e = fe+xµ2 and f (2)

e = fe−xµ1.So RHS of (2) above gives
xµ1 f (1)

e +xµ2 f (2)
e

xµ1 +xµ2

=
xµ1( fe+xµ2)+xµ2( fe−xµ1)

xµ1 +xµ2

= fe

if e 6∈ µ1 but ∈ µ2 then f (1)
e = fe−xµ2 and f (2)

e = fe+xµ1.So RHS of (2) above gives
xµ1 f (1)

e +xµ2 f (2)
e

xµ1 +xµ2

=
xµ1( fe−xµ2)+xµ2( fe+xµ1)

xµ1 +xµ2

= fe
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Conave osts and routing: proof

Take λ =
xµ1

xµ1 +xµ2

∈ (0,1) and 1−λ =
xµ2

xµ1 +xµ2

∈ (0,1).When C is onave. By de�nition, for all λ ∈ [0,1],
C(λf1 +(1−λ)f2) ≥ λC(f1)+(1−λ)C(f2)Given that f = λf(1) +(1−λ)f(2) we get

C(f) ≥ λC(f(1))+(1−λ)C(f(2))If C(f(1)) ≤C(f(2)), then λC(f(1))+(1−λ)C(f(2)) ≥C(f(1))and therefore, C(f) ≥C(f(1)). This means the traf� an

tpq an all be re-routed onto µ1 with less ost.If C(f(1)) ≥C(f(2)) then, re-route traf� tpq onto µ2. 2
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Conave osts and routing

The result above means that with onave ostswe an assume that single paths are used forend-to-end demands.Heuristi for network designadapt the Frank-Wolfe methodremember this was used for routing withonvex ostsassumptionswe start with a single path routing xthe orresponding indued load is fthe routing is not a shortest path routing
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Heuristi MethodIf all traf� is alloated to a shortest path, STOP.Else, selet for all k∈ K, a shortest length path µ̂kof length lµ̂k.Alloate tk to its shortest path µ̂k for all k∈ K.Call this routing z.Re-alulate shortest paths; go to �rst step.Note we have onave ost, so there is no guaranteethat the shortest path routing we �nd will be theminimal ost routing!
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The pointRouting and apaity are intriately linkedWe an solve the apaity problem (for the asesabove) by solving the routing problem on a ompletegraph.Any link with zero traf� is eliminatedother links have apaities designed to arry traf�plus some overhead.Different types of ostrouting ⇒ onvex osts ⇒ SPFonstrution ⇒ onave osts ⇒ unique routingspeial ase: linear ostsbest of both ases: unique SPF routing
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Example with linear osts
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Example with linear osts
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Example with linear osts
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Example with linear osts
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